16 research outputs found

    An Original Approach for a Better Remote Control of an Assistive Robot

    Get PDF
    Many researches have been done in the field of assistive robotics in the last few years. The first application field was helping with the disabled people\\u27s assistance. Different works have been performed on robotic arms in three kinds of situations. In the first case, static arm, the arm was principally dedicated to office tasks like telephone, fax... Several autonomous modes exist which need to know the precise position of objects. In the second configuration, the arm is mounted on a wheelchair. It follows the person who can employ it in more use cases. But if the person must stay in her/his bed, the arm is no more useful. In a third configuration, the arm is mounted on a separate platform. This configuration allows the largest number of use cases but also poses more difficulties for piloting the robot. The second application field of assistive robotics deals with the assistance at home of people losing their autonomy, for example a person with cognitive impairment. In this case, the assistance deals with two main points: security and cognitive stimulation. In order to ensure the safety of the person at home, different kinds of sensors can be used to detect alarming situations (falls, low cardiac pulse rate...). For assisting a distant operator in alarm detection, the idea is to give him the possibility to have complementary information from a mobile robot about the person\\u27s activity at home and to be in contact with the person. Cognitive stimulation is one of the therapeutic means used to maintain as long as possible the maximum of the cognitive capacities of the person. In this case, the robot can be used to bring to the person cognitive stimulation exercises and stimulate the person to perform them. To perform these tasks, it is very difficult to have a totally autonomous robot. In the case of disabled people assistance, it is even not the will of the persons who want to act by themselves. The idea is to develop a semi-autonomous robot that a remote operator can manually pilot with some driving assistances. This is a realistic and somehow desired solution. To achieve that, several scientific problems have to be studied. The first one is human-machine-cooperation. How a remote human operator can control a robot to perform a desired task? One of the key points is to permit the user to understand clearly the way the robot works. Our original approach is to analyse this understanding through appropriation concept introduced by Piaget in 1936. As the robot must have capacities of perceptio

    Pi-stacking functionalization through micelles swelling: Application to the synthesis of single wall carbon nanotube/porphyrin complexes for energy transfer

    Get PDF
    We report on a new, orginal and efficient method for "pi-stacking" functionalization of single wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single wall carbon nanotubes and porphyrin molecules. We developed a micelle swelling technique that leads to controlled and stable complexes presenting an efficient energy transfer. We demonstrate the key role of the organic solvent in the functionalization mechanism. By swelling the micelles, the solvent helps the non water soluble porphyrins to reach the micelle core and allows a strong enhancement of the interaction between porphyrins and nanotubes. This technique opens new avenues for the functionalization of carbon nanostructures.Comment: 6 pages, 5 figure

    Optimizing schools’ start time and bus routes

    Full text link
    Maintaining a fleet of buses to transport students to school is a major expense for school districts. To reduce costs by reusing buses between schools, many districts spread start times across the morning. However, assigning each school a time involves estimating the impact on transportation costs and reconciling additional competing objectives. Facing this intricate optimization problem, school districts must resort to ad hoc approaches, which can be expensive, inequitable, and even detrimental to student health. For example, there is medical evidence that early high school starts are impacting the development of an entire generation of students and constitute a major public health crisis. We present an optimization model for the school time selection problem (STSP), which relies on a school bus routing algorithm that we call biobjective routing decomposition (BiRD). BiRD leverages a natural decomposition of the routing problem, computing and combining subproblem solutions via mixed integer optimization. It significantly outperforms state-of-the-art routing methods, and its implementation in Boston has led to $5 million in yearly savings, maintaining service quality for students despite a 50-bus fleet reduction. Using BiRD, we construct a tractable proxy to transportation costs, allowing the formulation of the STSP as a multiobjective generalized quadratic assignment problem. Local search methods provide high-quality solutions, allowing school districts to explore tradeoffs between competing priorities and choose times that best fulfill community needs. In December 2017, the development of this method led the Boston School Committee to unanimously approve the first school start time reform in 30 years

    Travel Time Estimation in the Age of Big Data

    Full text link
    © 2019 INFORMS. Twenty-first century urban planners have identified the understanding of complex city traffic patterns as a major priority, leading to a sharp increase in the amount and the diversity of traffic data being collected. For instance, taxi companies in an increasing number of major cities have started recording metadata for every individual car ride, such as its origin, destination, and travel time. In this paper, we show that we can leverage network optimization insights to extract accurate travel time estimations from such origin–destination data, using information from a large number of taxi trips to reconstruct the traffic patterns in an entire city. We develop a method that tractably exploits origin–destination data, which, because of its optimization framework, could also take advantage of other sources of traffic information. Using synthetic data, we establish the robustness of our algorithm to high variance data, and the interpretability of its results. We then use hundreds of thousands of taxi travel time observations in Manhattan to show that our algorithm can provide insights about urban traffic patterns on different scales and accurate travel time estimations throughout the network

    Pharmacological and Molecular Characterization of 5-Hydroxytryptamine 7 Receptors in the Rat Adrenal Gland

    Full text link
    International audienceSerotonin (5-hydroxytryptamine; 5-HT) is a potent stimulator of aldosterone secretion in the rat adrenal gland but the type of receptor involved in the mechanism of action of 5-HT remains unknown. The aim of the present study was to determine the pharmacological profile and to clone the receptor responsible for the corticotropic effect of 5-HT in rat glomerulosa cells. A series of 10 serotonergic receptor agonists and 12 receptor antagonists was used to characterize the receptor mediating the effect of 5-HT on aldosterone secretion from perifused rat adrenocortical slices. Correlation analysis between the potencies of the different compounds in our model and those previously reported for various recombinant 5-HT receptors showed that the rat adrenal 5-HT receptor exhibits the same pharmacological profile as the 5-HT(7) receptor transiently expressed in COS-7 cells (r = 0.82 for agonists, p <.05; r = 0.83 for antagonists, p <.01). Polymerase chain reaction with specific primers revealed the expression of 5-HT(7) receptor mRNA in the rat adrenal gland. Cloning of the polymerase chain reaction product confirmed that the amplified DNA corresponded to the 5-HT(7) receptor cDNA sequence. Western blot analysis showed the presence of a protein with an apparent molecular mass of 66 kDa in the adrenal cortex but not in the medulla. Taken together, these data demonstrate that the rat adrenal glomerulosa expresses functional 5-HT(7) receptors. Rat glomerulosa cells will thus provide a robust and sensitive bioassay for future studies on native 5-HT(7) receptors

    Structure of the DP1–DP2 PolD complex bound with DNA and its implications for the evolutionary history of DNA and RNA polymerases

    Full text link
    PolD is an archaeal replicative DNA polymerase (DNAP) made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2). Recently, we reported the individual crystal structures of the DP1 and DP2 catalytic cores, thereby revealing that PolD is an atypical DNAP that has all functional properties of a replicative DNAP but with the catalytic core of an RNA polymerase (RNAP). We now report the DNA-bound cryo–electron microscopy (cryo-EM) structure of the heterodimeric DP1–DP2 PolD complex from Pyrococcus abyssi, revealing a unique DNA-binding site. Comparison of PolD and RNAPs extends their structural similarities and brings to light the minimal catalytic core shared by all cellular transcriptases. Finally, elucidating the structure of the PolD DP1–DP2 interface, which is conserved in all eukaryotic replicative DNAPs, clarifies their evolutionary relationships with PolD and sheds light on the domain acquisition and exchange mechanism that occurred during the evolution of the eukaryotic replisome

    Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017

    Full text link
    We report a multidrug-resistant Neisseria gonorrhoeae urogenital and pharyngeal infection with ceftriaxone resistance and intermediate resistance to azithromycin in a heterosexual woman in her 20s in France. Treatment with ceftriaxone plus doxycycline failed for the pharyngeal localisation. Whole-genome sequencing of isolate F90 identified MLST1903, NG-MAST ST3435, NG-STAR233, and relevant resistance determinants. F90 showed phenotypic and genotypic similarities to an internationally spreading multidrug-resistant and ceftriaxone-resistant clone detected in Japan and subsequently in Australia, Canada and Denmark

    DNA-binding mechanism and evolution of replication protein A

    Full text link
    Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes
    corecore