59 research outputs found

    MR cholangiopancreatography: 1.5T versus 3T

    No full text
    Soon after its introduction in 1991, MR cholangiopancreatography has become an established diagnostic tool for the evaluation of the pancreaticobiliary ductal system at a field strength of 1.5T. It remains unclear whether MR cholangiopancreatography performed at 3T will benefit from the higher magnetic field strength or whether a field strength of 1.5T should continue to be considered the gold standard for MR cholangiopancreatography. This article reviews the current literature on the benefits and drawbacks of MR cholangiopancreatography at 3T compared with a standard field strength of 1.5T. Field strength-related artifacts that affect MR cholangiopancreatography at 3T also are discussed

    MR imaging of the adrenal glands: 1.5T versus 3T

    No full text
    MR imaging at 1.5T is considered the prime cross-sectional imaging modality for characterization of adrenal lesions. This is of utmost clinical importance, because non-functioning adenoma and adrenal metastasis are fairly common. The differentiation of these two tumor entities primarily is based on chemical shift imaging, also known as dual echo in-phase and opposed-phase imaging. At 3.0 T, the echo time pairs for in-phase and opposed-phase MR imaging need to be adjusted because the frequency difference is double that of standard 1.5T MR systems. Unfortunately, the acquisition of the first opposed-phase echo at 1.1 milliseconds and the first in-phase echo at 2.2 milliseconds within the same breath-hold requires unacceptably high receiver bandwidths at 3.0 T. Therefore, alternative data collection schemes have been implemented. This article reviews the current literature regarding adrenal imaging at 3.0 T with a focus on the chemical shift technique

    Detection of hepatic portal venous gas: its clinical impact and outcome

    Get PDF
    The clinical impact and outcome of a rare radiographic finding of hepatic portal venous gas (HPVG) as well as the effectiveness of computed tomography (CT), CT scanogram, and conventional radiography in the detection of HPVG were retrospectively analyzed. CT scans, CT scanogram, and plain film radiographs of 11 patients with HPVG were reviewed and compared with their medical records and surgical and pathology reports. Eight of the 11 patients underwent plain film radiographs 1 day before or after the CT scan. HPVG was detected at CT in all 11 patients, on CT scanogram in three (3 of 11, 27.3%), and on plain films in one (one of eight, 12.5%). In nine of 11 patients (81.8%), CT revealed an associated pneumatosis intestinalis. In six of the 11 patients (54.6%), acute mesenteric ischemia was the underlying disease for HPVG. Seven patients (63.6%) underwent emergency exploratory laparotomy. The mortality rate for HPVG alone was 27.3% (3 of 11) and for HPVG related to mesenteric bowel disease 50% (three of six). Acute mesenteric ischemia is the most common cause of HPVG, which continues to have a predictably higher mortality. CT is superior to CT scanograms and radiographs in the detection of HPVG and its underlying diseases and, therefore, should be used as the primary diagnostic tool

    Body CT: technical advances for improving safety

    No full text
    OBJECTIVE: In this review, we attempt to address many of the issues that are related to ensuring patient benefit in body CT, balancing the use of ionizing radiation and iodinated contrast media. We attempt to not only summarize the literature but also make recommendations relevant to CT protocols, including the technical parameters of both the scanner and the associated contrast media. CONCLUSION: Although CT is a powerful tool that has transformed the practice of medicine, the benefits are accompanied by important risks. Radiologists must understand these risks and the strategies available to minimize them as well as the risks associated with contrast medium delivery in abdominal CT

    Prospective randomised comparison of diagnostic confidence and image quality with normal-dose and low-dose CT pulmonary angiography at various body weights.

    No full text
    OBJECTIVES To find a threshold body weight (BW) below 100 kg above which computed tomography pulmonary angiography (CTPA) using reduced radiation and a reduced contrast material (CM) dose provides significantly impaired quality and diagnostic confidence compared with standard-dose CTPA. METHODS In this prospectively randomised study of 501 patients with suspected pulmonary embolism and BW <100 kg, 246 were allocated into the low-dose group (80 kVp, 75 ml CM) and 255 into the normal-dose group (100 kVp, 100 ml CM). Contrast-to-noise ratio (CNR) in the pulmonary trunk was calculated. Two blinded chest radiologists independently evaluated subjective image quality and diagnostic confidence. Data were compared between the normal-dose and low-dose groups in five BW subgroups. RESULTS Vessel attenuation did not differ between the normal-dose and low-dose groups within each BW subgroup (P = 1.0). The CNR was higher with the normal-dose compared with the low-dose protocol (P < 0.006) in all BW subgroups except for the 90-99 kg subgroup (P = 0.812). Subjective image quality and diagnostic confidence did not differ between CT protocols in all subgroups (P between 0.960 and 1.0). CONCLUSIONS Subjective image quality and diagnostic confidence with 80 kVp CTPA is not different from normal-dose protocol in any BW group up to 100 kg. KEY POINTS • 80 kVp CTPA is safe in patients weighing <100 kg • Reduced radiation and iodine dose still provide high vessel attenuation • Image quality and diagnostic confidence with low-dose CTPA is good • Diagnostic confidence does not deteriorate in obese patients weighing <100 kg

    Assessment of the optimal temporal window for intravenous CT cholangiography

    No full text
    The optimal temporal window of intravenous (IV) computed tomography (CT) cholangiography was prospectively determined. Fifteen volunteers (eight women, seven men; mean age, 38 years) underwent dynamic CT cholangiography. Two unenhanced images were acquired at the porta hepatis. Starting 5 min after initiation of IV contrast infusion (20 ml iodipamide meglumine 52%), 15 pairs of images at 5-min intervals were obtained. Attenuation of the extrahepatic bile duct (EBD) and the liver parenchyma was measured. Two readers graded visualization of the higher-order biliary branches. The first biliary opacification in the EBD occurred between 15 and 25 min (mean, 22.3 min +/- 3.2) after initiation of the contrast agent. Biliary attenuation plateaued between the 35- and the 75-min time points. Maximum hepatic parenchymal enhancement was 18.5 HU +/- 2.7. Twelve subjects demonstrated poor or non-visualization of higher-order biliary branches; three showed good or excellent visualization. Body weight and both biliary attenuation and visualization of the higher-order biliary branches correlated significantly (P<0.05). For peak enhancement of the biliary tree, CT cholangiography should be performed no earlier than 35 min after initiation of IV infusion. For a fixed contrast dose, superior visualization of the biliary system is achieved in subjects with lower body weight

    Lipid-poor adenomas on unenhanced CT: does histogram analysis increase sensitivity compared with a mean attenuation threshold?

    No full text
    OBJECTIVE: The purpose of our study was to evaluate the efficacy of CT histogram analysis for further characterization of lipid-poor adenomas on unenhanced CT. MATERIALS AND METHODS: One hundred thirty-two adrenal nodules were identified in 104 patients with lung cancer who underwent PET/CT. Sixty-five nodules were classified as lipid-rich adenomas if they had an unenhanced CT attenuation of less than or equal to 10 H. Thirty-one masses were classified as lipid-poor adenomas if they had an unenhanced CT attenuation greater than 10 H and stability for more than 1 year. Thirty-six masses were classified as lung cancer metastases if they showed rapid growth in 1 year (n = 27) or were biopsy-proven (n = 9). Histogram analysis was performed for all lesions to provide the mean attenuation value and percentage of negative pixels. RESULTS: All lipid-rich adenomas had more than 10% negative pixels; 51.6% of lipid-poor adenomas had more than 10% negative pixels and would have been classified as indeterminate nodules on the basis of mean attenuation alone. None of the metastases had more than 10% negative pixels. Using an unenhanced CT mean attenuation threshold of less than 10 H yielded a sensitivity of 68% and specificity of 100% for the diagnosis of an adenoma. Using an unenhanced CT threshold of more than 10% negative pixels yielded a sensitivity of 84% and specificity of 100% for the diagnosis of an adenoma. CONCLUSION: CT histogram analysis is superior to mean CT attenuation analysis for the evaluation of adrenal nodules and may help decrease referrals for additional imaging or biopsy

    Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols

    No full text
    OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg

    Magnetic resonance (MR) cholangiography: quantitative and qualitative comparison of 3.0 Tesla with 1.5 Tesla

    No full text
    OBJECTIVES: To determine quantitative and qualitative image quality in patients undergoing magnetic resonance (MR) cholangiography at 3.0 Tesla (T) compared with 1.5 T. MATERIALS AND METHODS: Fifty patients (30 women; mean age, 51 years) underwent MR cholangiography at 1.5 T; another 50 patients (25 women; mean age 51 years) were scanned at 3.0 T. MR sequence protocol consisted of breath-hold single-slice rapid acquisition with relaxation enhancement (RARE) and a respiratory-triggered 3D turbo spin echo (3D TSE) sequence. Maximum intensity projections were generated from the 3D TSE datasets. Contrast-to-noise ratio (CNR) measurements between the common bile duct (CBD), left and right intrahepatic duct (LHD, RHD), and periductal tissue were performed. Three radiologists assessed qualitatively the visibility of the CBD, LHD, and RHD and the overall diagnostic quality. RESULTS: Mean gain in CNR at 3.0 T versus 1.5 T in all 3 locations ranged for the RARE sequence from 7.7% to 38.1% and for the 3D TSE from 0.5% to 26.1% (P > 0.05 for all differences). Qualitative analysis did not reveal any significant difference between the 2 field strengths (P > 0.05). CONCLUSIONS: MR cholangiography at 3.0 T shows a trend toward higher CNR without improving image quality significantly

    Is body weight the most appropriate criterion to select patients eligible for low-dose pulmonary CT angiography? Analysis of objective and subjective image quality at 80 kVp in 100 patients

    Get PDF
    The objective of this retrospective study was to assess image quality with pulmonary CT angiography (CTA) using 80 kVp and to find anthropomorphic parameters other than body weight (BW) to serve as selection criteria for low-dose CTA. Attenuation in the pulmonary arteries, anteroposterior and lateral diameters, cross-sectional area and soft-tissue thickness of the chest were measured in 100 consecutive patients weighing less than 100 kg with 80 kVp pulmonary CTA. Body surface area (BSA) and contrast-to-noise ratios (CNR) were calculated. Three radiologists analyzed arterial enhancement, noise, and image quality. Image parameters between patients grouped by BW (group 1: 0-50 kg; groups 2-6: 51-100 kg, decadally increasing) were compared. CNR was higher in patients weighing less than 60 kg than in the BW groups 71-99 kg (P between 0.025 and <0.001). Subjective ranking of enhancement (P = 0.165-0.605), noise (P = 0.063), and image quality (P = 0.079) did not differ significantly across all patient groups. CNR correlated moderately strongly with weight (R = -0.585), BSA (R = -0.582), cross-sectional area (R = -0.544), and anteroposterior diameter of the chest (R = -0.457; P < 0.001 all parameters). We conclude that 80 kVp pulmonary CTA permits diagnostic image quality in patients weighing up to 100 kg. Body weight is a suitable criterion to select patients for low-dose pulmonary CTA
    • …
    corecore