4 research outputs found

    Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied.</p> <p>Methods</p> <p>ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6.</p> <p>Results</p> <p>The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p < 0.01). The RI likewise revealed a statistically significant superiority of Xenon 5 minutes post extubation (p < 0.01). The Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001).</p> <p>Conclusions</p> <p>The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results.</p> <p>Trial Registration</p> <p>The trial was registered with the number ISRCTN01110844 <url>http://www.controlled-trials.com/isrctn/pf/01110844</url>.</p

    Marker-Free, Molecule Sensitive Mapping of Disturbed Falling Fluid Films Using Raman Imaging

    No full text
    Technical liquid flow films are the basic arrangement for gas fluid transitions of all kinds and are the basis of many chemical processes, such as columns, evaporators, dryers, and different other kinds of fluid/fluid separation units. This publication presents a new method for molecule sensitive, non-contact, and marker-free localized concentration mapping in vertical falling films. Using Raman spectroscopy, no label or marker is needed for the detection of the local composition in liquid mixtures. In the presented cases, the film mapping of sodium sulfate in water on a plain surface as well as an added artificial streaming disruptor with the shape of a small pyramid is scanned in three dimensions. The results show, as a prove of concept, a clear detectable spectroscopic difference between air, back plate, and sodium sulfate for every local point in all three dimensions. In conclusion, contactless Raman scanning on falling films for liquid mapping is realizable without any mechanical film interaction caused by the measuring probe. Surface gloss or optical reflections from a metallic back plate are suppressed by using only inelastic light scattering and the mathematical removal of background noise

    Design of a Multimodal Imaging System and Its First Application to Distinguish Grey and White Matter of Brain Tissue. A Proof-of-Concept-Study

    No full text
    Multimodal imaging gains increasing popularity for biomedical applications. This article presents the design of a novel multimodal imaging system. The centerpiece is a light microscope operating in the incident and transmitted light mode. Additionally, Raman spectroscopy and VIS/NIR reflectance spectroscopy are adapted. The proof-of-concept is realized to distinguish between grey matter (GM) and white matter (WM) of normal mouse brain tissue. Besides Raman and VIS/NIR spectroscopy, the following optical microscopy techniques are applied in the incident light mode: brightfield, darkfield, and polarization microscopy. To complement the study, brightfield images of a hematoxylin and eosin (H&amp;E) stained cryosection in the transmitted light mode are recorded using the same imaging system. Data acquisition based on polarization microscopy and Raman spectroscopy gives the best results regarding the tissue differentiation of the unstained section. In addition to the discrimination of GM and WM, both modalities are suited to highlight differences in the density of myelinated axons. For Raman spectroscopy, this is achieved by calculating the sum of two intensity peak ratios (I2857 + I2888)/I2930 in the high-wavenumber region. For an optimum combination of the modalities, it is recommended to apply the molecule-specific but time-consuming Raman spectroscopy to smaller regions of interest, which have previously been identified by the microscopic modes
    corecore