5 research outputs found

    Sustainable Biorefineries: What was Learned from the Design, Analysis and Implementation

    Get PDF
    Bioeconomies need sustainable technologies and strategies for biomass processing. One of the best ways to do that is to consider biorefineries as a practical way to achieve real developments in the industry for integral production of energy, food, feed and chemicals under an ideal dream of replacing today’s crude-oil and basically using the accessible biomass in the world as much as possible. Additionally, the existent biofuel facilities are constantly adding new processing lines without integral design strategies, and possibly repeating the past design and implementation errors in refineries based on crude-oil. In recent years, more as a fashion or tendency, these processing lines from biofuels industry have been integrated in a system called “biorefinery” and many sectors have supported this idea through policies to incentivize the development of the bio-based economies adopting this concept. The design of biorefineries is presented as a relevant topic due to the multiple processing paths that could be available to obtain a set of desirable products. However, after many scientific efforts in design through well validated methodologies the biorefineries currently are not working properly or are more close to a conventional standalone biomass processing. Some big facilities already implemented today as biorefineries are closed or working just as standalone process (biofuels plant), but not through a promising multiproduct biorefinery configuration for which the resulting design was developed. In this work, 13 biorefineries were analysed including 4 industrial cases that were implemented after specific design and different industrial plants that use different raw materials of renewable origin. To achieve this, different strategic cases were considered: raw materials with inherent logistics restrictions, technical, economic, environmental assessments together with social considerations and finally market restrictions. As a result, and based on different case studies (where these process engineering strategies where applied through conceptual design using Aspen Plus and Potential Environmental Impacts) the positive and negative lessons are discussed in detail. The main result is an overall learning from different cases of study for future design, analysis and implementation of new biorefineries with a real sustainability and avoiding a repetition of the same evolution that risky and controversial crude-oil refineries had

    Bioactive compounds as main economic drivers for sustainable biorefineries

    No full text
    This document describes a PhD proposal framed in a doctoral college entitled “PhD program TU Wien bioactive - Technologies for Drug Discovery and Production”. This project focuses on two main core thematic units: discovery of novel bioactive substances and sustainable production of pharmaceuticals. The first thematic unit focuses on discovering new bioactive substances with pharmaceutical application potential from fungi and plants. The second thematic focuses on the development of a sustainable production process for pharmaceuticals. The present PhD proposal is embedded in this second thematic unit. The presented PhD project is entitled: “Bioactive compounds as main economic drivers for sustainable biorefineries”. The main goal is to use a renewable plant biomass as nutrient source for the bioprocesses of the fungal expression hosts and set up a sustainable biorefinery for maximal resource utilization of the remaining components of the plant biomass. All activities are planned to fulfill requirements of the General Agreement of the project and are subjected to scientific and dissemination activities. Scientific requirements of the project are based on five publications, three of which must be accepted and two must be submitted. Three of these publications must be as first-author and only one can be a non-original publication (review paper). In addition, 14 ECTS have to be fulfilled as part of the doctoral college with specific lectures opened by the coordinators of the college. The project duration is 36 months starting on February 1, 2019 and finishing on January 31, 2022.#PLACEHOLDER_PARENT_METADATA_VALUE#MoP3-(01) page 1MoP3-(01) page 4

    Influence of Temperature and Lignin Concentration on Formation of Colloidal Lignin Particles in Solvent-Shifting Precipitation

    No full text
    Colloidal lignin particles offer a promising route towards material applications of lignin. While many parameters influencing the formation of these particles in solvent-shifting precipitation have been studied, only a small amount of research on the influence of temperature has been conducted so far, despite it being a major influence parameter in the precipitation of colloidal lignin particles. Temperature influences various other relevant properties, such as viscosity, density, and lignin solubility. This makes investigation of both temperature and lignin concentration in combination interesting. The present work investigates the precipitation at different temperatures and initial lignin concentrations, revealing that an increased mixing temperature results in smaller particle sizes, while the yield is slightly lowered. This effect was strongest at the highest lignin concentration, lowering the hydrodynamic diameter of the particles from 205 to 168 nm. Decreasing the lignin concentration resulted in significantly smaller particles (from 205 to 121 nm at 20 °C mixing temperature) but almost no change in particle yield (between 81.2 and 84.6% at 20 °C mixing temperature). This opens up possibilities for the process control and optimization of lignin precipitation

    Influence of Temperature and Lignin Concentration on Formation of Colloidal Lignin Particles in Solvent-Shifting Precipitation

    No full text
    Colloidal lignin particles offer a promising route towards material applications of lignin. While many parameters influencing the formation of these particles in solvent-shifting precipitation have been studied, only a small amount of research on the influence of temperature has been conducted so far, despite it being a major influence parameter in the precipitation of colloidal lignin particles. Temperature influences various other relevant properties, such as viscosity, density, and lignin solubility. This makes investigation of both temperature and lignin concentration in combination interesting. The present work investigates the precipitation at different temperatures and initial lignin concentrations, revealing that an increased mixing temperature results in smaller particle sizes, while the yield is slightly lowered. This effect was strongest at the highest lignin concentration, lowering the hydrodynamic diameter of the particles from 205 to 168 nm. Decreasing the lignin concentration resulted in significantly smaller particles (from 205 to 121 nm at 20 °C mixing temperature) but almost no change in particle yield (between 81.2 and 84.6% at 20 °C mixing temperature). This opens up possibilities for the process control and optimization of lignin precipitation

    Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin

    No full text
    Developing sustainable biorefineries is an urgent matter to support the transition to a sustainable society. Lignocellulosic biomass (LCB) is a crucial renewable feedstock for this purpose, and its complete valorization is essential for the sustainability of biorefineries. However, it is improbable that a single pretreatment will extract both sugars and lignin from LCB. Therefore, a combination of pretreatments must be applied. Liquid-hot-water (LHW) is highlighted as a pretreatment for hemicellulose hydrolysis, conventionally analyzed only in terms of sugars and degradation products. However, lignin is also hydrolyzed in the process. The objective of this work was to evaluate LHW at different conditions for sugars, degradation products, and lignin. We performed LHW at 160, 180, and 200 °C for 30, 60, and 90 min using wheat straw and characterized the extract for sugars, degradation products (furfural, hydroxymethylfurfural, and acetic acid), and lignin. Three conditions allowed reaching similar total sugar concentrations (~12 g/L): 160 °C for 90 min, 180 °C for 30 min, and 180 °C for 60 min. Among these, LHW performed at 160 °C for 90 min allowed the lowest concentration of degradation products (0.2, 0.01, and 1.4 g/L for furfural, hydroxymethylfurfural, and acetic acid, respectively) and lignin hydrolysis (2.2 g/L). These values indicate the potential use of the obtained sugars as a fermentation substrate while leaving the lignin in the solid phase for a following stage focused on its extraction and valorization
    corecore