497 research outputs found

    Direct Monocular Odometry Using Points and Lines

    Full text link
    Most visual odometry algorithm for a monocular camera focuses on points, either by feature matching, or direct alignment of pixel intensity, while ignoring a common but important geometry entity: edges. In this paper, we propose an odometry algorithm that combines points and edges to benefit from the advantages of both direct and feature based methods. It works better in texture-less environments and is also more robust to lighting changes and fast motion by increasing the convergence basin. We maintain a depth map for the keyframe then in the tracking part, the camera pose is recovered by minimizing both the photometric error and geometric error to the matched edge in a probabilistic framework. In the mapping part, edge is used to speed up and increase stereo matching accuracy. On various public datasets, our algorithm achieves better or comparable performance than state-of-the-art monocular odometry methods. In some challenging texture-less environments, our algorithm reduces the state estimation error over 50%.Comment: ICRA 201

    Semantic 3D Occupancy Mapping through Efficient High Order CRFs

    Full text link
    Semantic 3D mapping can be used for many applications such as robot navigation and virtual interaction. In recent years, there has been great progress in semantic segmentation and geometric 3D mapping. However, it is still challenging to combine these two tasks for accurate and large-scale semantic mapping from images. In the paper, we propose an incremental and (near) real-time semantic mapping system. A 3D scrolling occupancy grid map is built to represent the world, which is memory and computationally efficient and bounded for large scale environments. We utilize the CNN segmentation as prior prediction and further optimize 3D grid labels through a novel CRF model. Superpixels are utilized to enforce smoothness and form robust P N high order potential. An efficient mean field inference is developed for the graph optimization. We evaluate our system on the KITTI dataset and improve the segmentation accuracy by 10% over existing systems.Comment: IROS 201

    Bayesian Active Edge Evaluation on Expensive Graphs

    Full text link
    Robots operate in environments with varying implicit structure. For instance, a helicopter flying over terrain encounters a very different arrangement of obstacles than a robotic arm manipulating objects on a cluttered table top. State-of-the-art motion planning systems do not exploit this structure, thereby expending valuable planning effort searching for implausible solutions. We are interested in planning algorithms that actively infer the underlying structure of the valid configuration space during planning in order to find solutions with minimal effort. Consider the problem of evaluating edges on a graph to quickly discover collision-free paths. Evaluating edges is expensive, both for robots with complex geometries like robot arms, and for robots with limited onboard computation like UAVs. Until now, this challenge has been addressed via laziness i.e. deferring edge evaluation until absolutely necessary, with the hope that edges turn out to be valid. However, all edges are not alike in value - some have a lot of potentially good paths flowing through them, and some others encode the likelihood of neighbouring edges being valid. This leads to our key insight - instead of passive laziness, we can actively choose edges that reduce the uncertainty about the validity of paths. We show that this is equivalent to the Bayesian active learning paradigm of decision region determination (DRD). However, the DRD problem is not only combinatorially hard, but also requires explicit enumeration of all possible worlds. We propose a novel framework that combines two DRD algorithms, DIRECT and BISECT, to overcome both issues. We show that our approach outperforms several state-of-the-art algorithms on a spectrum of planning problems for mobile robots, manipulators and autonomous helicopters

    Pop-up SLAM: Semantic Monocular Plane SLAM for Low-texture Environments

    Full text link
    Existing simultaneous localization and mapping (SLAM) algorithms are not robust in challenging low-texture environments because there are only few salient features. The resulting sparse or semi-dense map also conveys little information for motion planning. Though some work utilize plane or scene layout for dense map regularization, they require decent state estimation from other sources. In this paper, we propose real-time monocular plane SLAM to demonstrate that scene understanding could improve both state estimation and dense mapping especially in low-texture environments. The plane measurements come from a pop-up 3D plane model applied to each single image. We also combine planes with point based SLAM to improve robustness. On a public TUM dataset, our algorithm generates a dense semantic 3D model with pixel depth error of 6.2 cm while existing SLAM algorithms fail. On a 60 m long dataset with loops, our method creates a much better 3D model with state estimation error of 0.67%.Comment: International Conference on Intelligent Robots and Systems (IROS) 201
    • …
    corecore