15 research outputs found
Cathodic polarization coats titanium based implant materials with enamel matrix derivate (EMD)
The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity
Grid Workflow Approach using the CELLmicrocosmos 2.2 MembraneEditor and UNICORE to commit and monitor GROMACS Jobs
Rubert S, Gamroth C, Krüger J, Sommer B. Grid Workflow Approach using the CELLmicrocosmos 2.2 MembraneEditor and UNICORE to commit and monitor GROMACS Jobs. In: Warzecha K-D, Packschies L, eds. CEUR Workshop Proceedings. Vol 826. CEUR-WS; 2012.Molecular dynamic simulations of membrane systems are
an important method for the prediction and analysis of
physicochemical properties. The CELLmicrocosmos 2.2
MembraneEditor (CmME) provides a comfortable workflow to
generate lipid membranes with different conformations. While CmME is intended to generate molecular structures on desktop and mobile computers in a very short time, the atomic simulation of exported membranes needs external high performance computer resources. In this work, a first approach of a direct connection between CmME and a cluster running GROMACS using the Gridmiddleware UNICORE-6 is discussed
Modeling of cell-cell communication processes with Petri nets using the example of quorum sensing
Janowski SJ, Kormeier B, Töpel T, et al. Modeling of cell-cell communication processes with Petri nets using the example of quorum sensing. In Silico Biology. 2010;10(Special Issue: Petri Net Applications in Molecular Biology):27-48.The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way
Modeling of Cell-to-Cell Communication Processes with Petri Nets Using the Example of Quorum Sensing
Janowski SJ, Kormeier B, Töpel T, et al. Modeling of Cell-to-Cell Communication Processes with Petri Nets Using the Example of Quorum Sensing. In: Wingender E, ed. Biological Petri Nets. Studies in health technology and informatics. Vol 162. Amsterdam: IOS Press; 2011: 182-203.The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way
ESIPT and FRET probes for monitoring nanoparticle polymer coating stability
Coating strategies of inorganic nanoparticles (NPs) can provide properties unavailable to the NP core alone, such as targeting, specific sensing, and increased biocompatibility. Non-covalent amphiphilic NP capping polymers function via hydrophobic interactions with surface ligands and are extensively used to transfer NPs to aqueous media. For applications of coated NPs as actuators (sensors, markers, or for drug delivery) in a complex environment, such as biological systems, it is important to achieve a deep understanding of the factors affecting coating stability and behavior. We have designed a system that tests the coating stability of amphiphilic polymers through a simple fluorescent readout using either polarity sensing ESIPT (excited state intramolecular proton transfer) dyes or NP FRET (Förster resonance energy transfer). The stability of the coating was determined in response to changes in polarity, pH and ionic strength in the medium. Using the ESIPT system we observed linear changes in signal up to ∼20-25% v/v of co-solvent addition, constituting a break point. Based on such data, we propose a model for coating instability and the important adjustable parameters, such as the electrical charge distribution. FRET data provided confirmatory evidence for the model. The ESIPT dyes and FRET based methods represent new, simple tools for testing NP coating stability in complex environments.Fil: Azcárate, Julio César. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas; ArgentinaFil: Diaz, Sebastian Andres. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Fauerbach, Jonathan Arturo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Gillanders, Florencia. Max Planck Institute For Biophysical Chemistry; Alemania. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias ; ArgentinaFil: Rubert, Aldo Alberto. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas; ArgentinaFil: Jares, Elizabeth Andrea. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Jovin, Thomas M.. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Fonticelli, Mariano Hernan. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas; Argentin
A decrease in intact parathyroid hormone (iPTH) levels is associated with higher mortality in prevalent hemodialysis patients.
BACKGROUND:The mortality of dialysis patients is 10- to 100-fold higher than in the general population. Baseline serum PTH levels, and more recently, changes in serum PTH levels (ΔPTH) over time, have been associated to mortality in dialysis patients. METHODS:We explored the relationship between ΔPTH over 1 year with mortality over the next year in a prospective cohort of 115 prevalent hemodialysis patients from a single center that had median baseline iPTH levels within guideline recommendations. RESULTS:Median baseline iPTH levels were 205 (116.5, 400) pg/ml. ΔiPTH between baseline and 1 year was 85.2 ± 57.1 pg/ml. During the second year of follow-up, 27 patients died. ΔiPTH was significantly higher in patients who survived (+157.30 ± 25.82 pg/ml) than in those who died (+39.03 ± 60.95 pg/ml), while baseline iPTH values were not significantly different. The highest mortality (48%) was observed in patients with a decrease in ΔiPTH (ΔiPTH quartile 1, negative ΔiPTH) and the lowest (12%) mortality in quartile 3 ΔiPTH (ΔiPTH increase 101-300 pg/ml). In a logistic regression model, ΔiPTH was associated with mortality with an odds ratio (OR) of 0.998 (95% CI 0.996-0999, p = 0.038). In multivariable analysis, mortality risk was 73% and 88% lower for patients with ΔiPTH 0-100 pg/ml and 101-300 pg/ml, respectively, than for those with a decrease in ΔiPTH. In patients with a decrease in ΔiPTH, the OR for death was 4.131 (1.515-11.27)(p = 0.006). CONCLUSIONS:In prevalent hemodialysis patients with median baseline iPTH values within the guideline recommended range, a decrease in ΔiPTH was associated with higher mortality. Further studies are required to understand the mechanisms and therapeutic implications of this observation that challenges current clinical practice