4 research outputs found

    Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation

    Get PDF
    Mutations in the SRY gene encompassing the HMG box have been well characterized in gonadal dysgenesis, male infertility and other types of sex chromosome related anomalies (SCRA). However, no information is available on copy number status of this gene under such abnormal conditions. Employing 'Taqman Probe Assay' specific to the SRY gene, we screened 16 DNA samples from patients with SCRA and 36 samples from males exposed to high levels of natural background radiation (HNBR). Patients with SCRA showed 2-16 copies of the SRY gene of which, one, Oxen (49, XYYYY) had eight copies with sequences different from one another. Of the 36 HNBR samples, 12 had one copy whereas 24 harboured 2-8 copies of the SRY gene. A HNBR male 33F had one normal and one mutated copy of this gene. Analysis of 25 DNA samples from blood and semen of normal males showed only one copy of this gene. Despite multiple copies in affected males, fluorescence in-situ hybridization (FISH) with SRY probe detected a single signal on the Y chromosome in HNBR males suggesting its possible localized tandem duplication. Copy number status of the other Y-linked loci is envisaged to augment DNA diagnostics facilitating genetic counselling to affected patients

    Genomic instability of the DYZ1 repeat in patients with Y chromosome anomalies and males exposed to natural background radiation

    Get PDF
    We assessed genomic instability of 3.4 kb DYZ1 repeat arrays in patients encompassing prostate cancer (PC), cases of repeated abortion (RA) and males exposed to natural background radiation (NBR) using real-time PCR and fluorescence in situ hybridization (FISH). Normal males showed DYZ1 copies ranging from 3000 to 4300, RA, 0-2237; PC, 550; and males exposed to NBR, 1577-5700. FISH showed organizational variation of DYZ1 in these samples substantiating the data obtained from real-time PCR. Of the 10 RA samples, 7 were found to be affected of which, 5 showed deletion of 265 bp from nt 25 to 290 and 773 bp from 1347 to 2119 and 2 showed deletion of 275 bp from nt 3128 to 3402. Copy number variation of DYZ1 in these males correlated with genetic constrains/anomalies. Although precise mechanisms of genomic instability of DYZ1 remains unclear, we construe that this repeat plays a critical role in maintaining the structural integrity of the Y chromosome, possibly by absorbing the load of mutations. This may be used as a marker system to analyze genetic integrity of the DYZ1 repeat array(s) across the spectrum of patients

    Unique Signatures of Natural Background Radiation on Human Y Chromosomes from Kerala, India

    Get PDF
    The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR) is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF) a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP) of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm) samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India
    corecore