69 research outputs found

    A Parameterized Study of Maximum Generalized Pattern Matching Problems

    Full text link
    The generalized function matching (GFM) problem has been intensively studied starting with [Ehrenfeucht and Rozenberg, 1979]. Given a pattern p and a text t, the goal is to find a mapping from the letters of p to non-empty substrings of t, such that applying the mapping to p results in t. Very recently, the problem has been investigated within the framework of parameterized complexity [Fernau, Schmid, and Villanger, 2013]. In this paper we study the parameterized complexity of the optimization variant of GFM (called Max-GFM), which has been introduced in [Amir and Nor, 2007]. Here, one is allowed to replace some of the pattern letters with some special symbols "?", termed wildcards or don't cares, which can be mapped to an arbitrary substring of the text. The goal is to minimize the number of wildcards used. We give a complete classification of the parameterized complexity of Max-GFM and its variants under a wide range of parameterizations, such as, the number of occurrences of a letter in the text, the size of the text alphabet, the number of occurrences of a letter in the pattern, the size of the pattern alphabet, the maximum length of a string matched to any pattern letter, the number of wildcards and the maximum size of a string that a wildcard can be mapped to.Comment: to appear in Proc. IPEC'1

    The Complexity of Planning Revisited - A Parameterized Analysis

    Full text link
    The early classifications of the computational complexity of planning under various restrictions in STRIPS (Bylander) and SAS+ (Baeckstroem and Nebel) have influenced following research in planning in many ways. We go back and reanalyse their subclasses, but this time using the more modern tool of parameterized complexity analysis. This provides new results that together with the old results give a more detailed picture of the complexity landscape. We demonstrate separation results not possible with standard complexity theory, which contributes to explaining why certain cases of planning have seemed simpler in practice than theory has predicted. In particular, we show that certain restrictions of practical interest are tractable in the parameterized sense of the term, and that a simple heuristic is sufficient to make a well-known partial-order planner exploit this fact.Comment: (author's self-archived copy

    SAT Backdoors: Depth Beats Size

    Get PDF
    • …
    corecore