4 research outputs found
High-speed integrated QKD system
Quantum key distribution (QKD) is nowadays a well established method for
generating secret keys at a distance in an information-theoretic secure way, as
the secrecy of QKD relies on the laws of quantum physics and not computational
complexity. In order to industrialize QKD, low-cost, mass-manufactured and
practical QKD setups are required. Hence, photonic and electronic integration
of the sender's and receiver's respective components is currently in the
spotlight. Here we present a high-speed (2.5 GHz) integrated QKD setup
featuring a transmitter chip in silicon photonics allowing for high-speed
modulation and accurate state preparation, as well as a
polarization-independent low-loss receiver chip in aluminum borosilicate glass
fabricated by the femtosecond laser micromachining technique. Our system
achieves raw bit error rates, quantum bit error rates and secret key rates
equivalent to a much more complex state-of-the-art setup based on discrete
components
Partially slotted silicon ring resonator covered with electro-optical polymer
In this work, we present for the first time a partially slotted silicon ring resonator (PSRR) covered with an electro-optical polymer (Poly[(methyl methacrylate)-co-(Disperse Red 1 acrylate)]). The PSRR takes advantage of both a highly efficient vertical slot waveguide based phase shifter and a low loss strip waveguide in a single ring. The device is realized on 200 mm silicon-on-insulator wafers using 248 nm DUV lithography and covered with the electro-optic polymer in a post process. This silicon-organic hybrid ring resonator has a small footprint, high optical quality factor, and high DC device tunability. A quality factor of up to 105 and a DC device tunability of about 700 pm/V is experimentally demonstrated in the wavelength range of 1540 nm to 1590 nm. Further, we compare our results with state-of-the-art silicon-organic hybrid devices by determining the poling efficiency. It is demonstrated that the active PSRR is a promising candidate for efficient optical switches and tunable filters
High-speed integrated QKD system
Quantum key distribution (QKD) is nowadays a well-established method for generating secret keys at a distance in an information-theoretically secure way, as the secrecy of QKD relies on the laws of quantum physics and not on computational complexity. In order to industrialize QKD, low-cost, mass-manufactured, and practical QKD setups are required. Hence, photonic and electronic integration of the sender’s and receiver’s respective components is currently in the spotlight. Here we present a high-speed (2.5 GHz) integrated QKD setup featuring a transmitter chip in silicon photonics allowing for high-speed modulation and accurate state preparation, as well as a polarization-independent low-loss receiver chip in aluminum borosilicate glass fabricated by the femtosecond laser micromachining technique. Our system achieves raw bit error rates, quantum bit error rates, and secret key rates equivalent to a much more complex state-of-the-art setup based on discrete components [Boaron A. et al. , Phys. Rev. Lett. 121 , 190502 (2018)].</p