3 research outputs found

    Early rise in central venous pressure during a spontaneous breathing trial: A promising test to identify patients at high risk of weaning failure?

    Get PDF
    Background The spontaneous breathing trial (SBT) assesses the risk of weaning failure by evaluating some physiological responses to the massive venous return increase imposed by discontinuing positive pressure ventilation. This trial can be very demanding for some critically ill patients, inducing excessive physical and cardiovascular stress, including muscle fatigue, heart ischemia and eventually cardiac dysfunction. Extubation failure with emergency reintubation is a serious adverse consequence of a failed weaning process. Some data suggest that as many as 50% of patients that fail weaning do so because of cardiac dysfunction. Unfortunately, monitoring cardiovascular function at the time of the SBT is complex. The aim of our study was to explore if central venous pressure (CVP) changes were related to weaning failure after starting an SBT. We hypothesized that an early rise on CVP could signal a cardiac failure when handling a massive increase on venous return following a discontinuation of positive pressure ventilation. This CVP rise could identify a subset of patients at high risk for extubation failure. Methods Two-hundred and four mechanically ventilated patients in whom an SBT wa

    Simple Wireless Impedance Pneumography System for Unobtrusive Sensing of Respiration

    No full text
    This extended paper presents the development and implementation at a prototype level of a wireless, low-cost system for the measurement of the electrical bioimpedance of the chest with two channels using the AD5933 in a bipolar electrode configuration to measure impedance pneumography. The measurement device works for impedance measurements ranging from 1 Ω to 1800 Ω. Fifteen volunteers were measured with the prototype. We found that the left hemithorax has higher impedance compared to the right hemithorax, and the acquired signal presents the phases of the respiratory cycle with variations between 1 Ω, in normal breathing, to 6 Ω in maximum inhalation events. The system can measure the respiratory cycle variations simultaneously in both hemithorax with a mean error of −0.18 ± 1.42 BPM (breaths per minute) in the right hemithorax and −0.52 ± 1.31 BPM for the left hemithorax, constituting a useful device for the breathing rate calculation and possible screening applications
    corecore