117 research outputs found

    Temporal discrimination: Mechanisms and relevance to adult-onset dystonia

    Get PDF
    Temporal discrimination is the ability to determine that two sequential sensory stimuli are separated in time. For any individual, the temporal discrimination threshold (TDT) is the minimum interval at which paired sequential stimuli are perceived as being asynchronous; this can be assessed, with high test-retest and inter-rater reliability, using a simple psychophysical test. Temporal discrimination is disordered in a number of basal ganglia diseases including adult-onset dystonia, of which the two most common phenotypes are cervical dystonia and blepharospasm. The causes of adult-onset focal dystonia are unknown; genetic, epigenetic, and environmental factors are relevant. Abnormal TDTs in adult-onset dystonia are associated with structural and neurophysiological changes considered to reflect defective inhibitory interneuronal processing within a network which includes the superior colliculus, basal ganglia, and primary somatosensory cortex. It is hypothesized that abnormal temporal discrimination is a mediational endophenotype and, when present in unaffected relatives of patients with adult-onset dystonia, indicates non-manifesting gene carriage. Using the mediational endophenotype concept, etiological factors in adult-onset dystonia may be examined including (i) the role of environmental exposures in disease penetrance and expression; (ii) sexual dimorphism in sex ratios at age of onset; (iii) the pathogenesis of non-motor symptoms of adult-onset dystonia; and (iv) subcortical mechanisms in disease pathogenesis

    Gait Characteristics and Cognitive Function in Middle-Aged Adults With and Without Type 2 Diabetes Mellitus: Data from ENBIND

    Get PDF
    Type 2 Diabetes Mellitus (T2DM) in midlife is associated with a greater risk of dementia in later life. Both gait speed and spatiotemporal gait characteristics have been associated with later cognitive decline in community-dwelling older adults. Thus, the assessment of gait characteristics in uncomplicated midlife T2DM may be important in selecting-out those with T2DM at greatest risk of later cognitive decline. We assessed the relationship between Inertial Motion Unit (IMUs)- derived gait characteristics and cognitive function assessed via Montreal Cognitive Assessment (MOCA)/detailed neuropsychological assessment battery (CANTAB) in middle-aged adults with and without uncomplicated T2DM using both multivariate linear regression and a neural network approach. Gait was assessed under (i) normal walking, (ii) fast (maximal) walking and (iii) cognitive dual-task walking (reciting alternate letters of the alphabet) conditions. Overall, 138 individuals were recruited (n = 94 with T2DM; 53% female, 52.8 8.3 years; n = 44 healthy controls, 43% female, 51.9 8.1 years). Midlife T2DM was associated with significantly slower gait velocity on both slow and fast walks (both p \u3c 0.01) in addition to a longer stride time and greater gait complexity during normal walk (both p \u3c 0.05). Findings persisted following covariate adjustment. In analyzing cognitive performance, the strongest association was observed between gait velocity and global cognitive function (MOCA). Significant associations were also observed between immediate/delayed memory performance and gait velocity. Analysis using a neural network approach did not outperform multivariate linear regression in predicting cognitive function (MOCA) from gait velocity. Our study demonstrates the impact of uncomplicated T2DM on gait speed and gait characteristics in midlife, in addition to the striking relationship between gait characteristics and global cognitive function/memory performance in midlife. Further studies are needed to evaluate the longitudinal relationship between midlife gait characteristics and later cognitive decline, which may aid in selecting-out those with T2DM at greatest-risk for preventative interventions

    Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia

    Get PDF
    The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed

    A Comparison of Stimulus Presentation Methods in Temporal Discrimination Testing

    Get PDF
    The temporal discrimination threshold (TDT) is the shortest time interval at which an individual detects two stimuli to be asynchronous (normal  =  30-50 ms). It has been shown to be abnormal in patients with disorders affecting the basal ganglia including adult onset idiopathic focal dystonia (AOIFD). Up to 97% of patients have an abnormal TDT with age- and sex-related penetrance in unaffected relatives, demonstrating an autosomal dominant inheritance pattern. These findings support the use of the TDT as a pre-clinical biomarker for AOIFD. The usual stimulus presentation method involves the presentation of progressively asynchronous stimuli; when three sequential stimuli are reported asynchronous is taken as a participant\u27s TDT. To investigate the robustness of the \u27staircase\u27 method of presentation, we introduced a method of randomised presentation order to explore any potential \u27learning effect\u27 that may be associated with this existing method. The aim of this study was to investigate differences in temporal discrimination using two methods of stimulus presentation. Thirty healthy volunteers were recruited to the study (mean age 33.73  ±  3.4 years). Visual and tactile TDT testing using a staircase and randomised method of presentation order was carried out in a single session. There was a strong relationship between the staircase and random method for TDT values. This observed consistency between testing methods suggests that the existing experimental approach is a robust method of recording an individual\u27s TDT. In addition, our newly devised randomised paradigm is a reproducible and more efficient method for data acquisition in the clinic setting. However, the two presentation methods yield different absolute TDT results and either of the two methods should be used uniformly in all participants in any one particular study. doi: 10.1088/1361-6579/38/2/N5

    Femtosecond frequency conversion in diamond under gaussian and bessel beam pumping

    Get PDF
    Diamond Raman lasers (DRLs) have been the subject of extensive research in the recent years. Continuous-wave and pulsed, intra- and extra-cavity DRLs emitting from UV to IR have been demonstrated [1]. The majority of these studies were carried out in the steady-state mode, when the pump pulse duration is longer than the dephasing time in diamond. Less work has been done on the transient mode, when the pulse duration is shorter than the dephasing time: DRLs under femtosecond (fs) pumping in synchronously-pumped cavities has been demonstrated [2], and supercontinuum (SC) generation in diamond under fs pumping has been reported [3]. The major mechanism for SC generation under fs laser pumping is believed to be self-phase modulation (SPM). It has been shown before that this effect can be significantly reduced when using the Bessel beam pumping. In this work we present a first comparison study of the effect of Gaussian and Bessel pump beams on the spectral properties of nonlinear frequency conversion in diamond in transient mode

    Acute Esophageal Necrosis Secondary to a Paraesophageal Hernia.

    Get PDF
    Acute esophageal necrosis (AEN) or black esophagus is a rare clinical entity caused by necrosis of distal esophageal mucosa stemming from esophageal ischemia. Possible etiologies are broad but most commonly include possible triggers of low-flow vascular states in the esophagus, including infections, broad-spectrum antibiotic use, and gastric volvulus, among others. Patients most commonly present clinically with acute onset hematemesis and melena. Here, we describe a patient who initially presented with multiple nonspecific gastrointestinal symptoms, including abdominal pain and nausea, that progressed over a 10-day period, culminating in multiple episodes of hematemesis prior to presentation. Endoscopic evaluation confirmed the diagnosis of AEN and unveiled a possible paraesophageal hernia (PEH) as the causative factor. A subsequent videofluoroscopic barium swallow was utilized to better characterize the upper gastrointestinal anatomy and confirmed the PEH as a likely etiology. Esophagogastroduodenoscopy (EGD) can often identify PEH independently, but in patients with AEN secondary to a possible, but unclear, PEH on EGD, a videofluoroscopic barium swallow is an appropriate and useful next step in confirming the diagnosis. While treatment of AEN traditionally involves fluid resuscitation, intravenous protein pump inhibitors, and total parenteral nutrition, surgical intervention is often indicated in patients who have a contributing and symptomatic PEH

    Menstrual Cycle and the Temporal Discrimination Threshold

    Get PDF
    The temporal discrimination threshold (TDT) is a proposed pre-clinical biomarker (endophenotype) for adult onset isolated focal dystonia (AOIFD). Age- and sex-related effects on temporal discrimination demonstrate that women, before the age of 40 years, have faster temporal discrimination than men but their TDTs worsen with age at almost three times the rate of men. Thus after 40 years the TDT in women is progressively worse than in men. AOIFD is an increasingly female-predominant disorder after the age of 40; it is not clear whether this age-related sexually-dimorphic difference observed for both the TDT and sex ratio at disease onset in AOIFD is a hormonal or chromosomal effect. The aim of this study was to examine temporal discrimination at weekly intervals during two consecutive menstrual cycles in 14 healthy female volunteers to determine whether physiological hormonal changes affected temporal discrimination. We observed no significant differences in weekly temporal discrimination threshold values during the menstrual cycles and no significant correlation with the menstrual cycle stage. This observed stability of temporal discrimination during cyclical hormonal change raises interesting questions concerning the age-related sexually-dimorphic decline observed in temporal discrimination. Our findings pave the way for future studies exploring potential pathomechanisms for this age-related deterioration

    Neural Correlates of Abnormal Temporal Discrimination in Unaffected Relatives of Cervical Dystonia Patients

    Get PDF
    Background: An abnormal temporal discrimination threshold in cervical dystonia (CD) is considered to be a mediational endophenotype; in unaffected relatives it is hypothesized to indicate non-manifesting gene carriage. The pathogenesis underlying this condition remains unknown. Investigation of the neural networks involved in disordered temporal discrimination may highlight its pathomechanisms.Objective: To examine resting state brain function in unaffected relatives of CD patients with normal and abnormal temporal discrimination. We hypothesized that the endophenotype, an abnormal temporal discrimination, would manifest as altered connectivity in relatives in regions associated with CD, thereby illuminating the neural substrates of the link between temporal discrimination and CD.Methods: Rs-fMRI data was analyzed from two sex- and age-matched cohorts: 16 unaffected relatives of CD patients with normal temporal discrimination and 16 with abnormal temporal discrimination. Regional and whole brain functional connectivity measures were extracted via Independent Component Analysis (ICA), Regional Homogeneity (ReHo), and Amplitude of Low Frequency (ALFF) analyses.Results: Our ICA analysis revealed increased connectivity within both the executive control and cerebellar networks and decreased connectivity within the sensorimotor network in relatives with abnormal temporal discrimination when compared to relatives with normal temporal discrimination. The ReHo and ALFF analyses complimented these results and demonstrated connectivity differences in areas corresponding to motor planning, movement coordination, visual information processing, and eye movements in unaffected relatives with abnormal temporal discrimination.Conclusion: Disordered connectivity in unaffected relatives with abnormal temporal discrimination illuminates neural substrates underlying endophenotype expression and supports the hypothesis that genetically determined aberrant connectivity, when later coupled with unknown environmental triggers, may lead to disease penetrance

    Disrupted Superior Collicular Activity May Reveal Crvical Dystonia Disease Pathomechanisms

    Get PDF
    Cervical dystonia is a common neurological movement disorder characterised by muscle contractions causing abnormal movements and postures afecting the head and neck. The neural networks underpinning this condition are incompletely understood. While animal models suggest a role for the superior colliculus in its pathophysiology, this link has yet to be established in humans. The present experiment was designed to test the hypothesis that disrupted superior collicular processing is evident in afected patients and in relatives harbouring a disease-specifc endophenotype (abnormal temporal discrimination). The study participants were 16 cervical dystonia patients, 16 unafected frst-degree relatives with abnormal temporal discrimination, 16 unafected frst-degree relatives with normal temporal discrimination and 16 healthy controls. The response of participant’s superior colliculi to looming stimuli was assessed by functional magnetic resonance imaging. Cervical dystonia patients and relatives with abnormal temporal discrimination demonstrated (i) signifcantly reduced superior collicular activation for whole brain and region of interest analysis; (ii) a statistically signifcant negative correlation between temporal discrimination threshold and superior collicular peak values. Our results support the hypothesis that disrupted superior collicular processing is involved in the pathogenesis of cervical dystonia. These fndings, which align with animal models of cervical dystonia, shed new light on pathomechanisms in humans
    corecore