4 research outputs found

    Automated detection and segmentation of non-small cell lung cancer computed tomography images.

    Full text link
    peer reviewedDetection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours

    Radiomics applied to lung cancer: a review

    No full text
    Lung cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics, a concept introduced in 2012, refers to the comprehensive quantification of tumor phenotypes by applying a large number of quantitative image features (watch the animation: https://youtu.be/Tq980GEVP0Y and the website www.radiomics.org). Here, we review the literature related to radiomics for lung cancer. We found 11 papers related to computed tomography (CT) radiomics, 3 to radiomics or texture analysis with positron emission tomography (PET) and 8 relating to PET/CT radiomics. There are two main applications of radiomics, the classification of lung nodules (diagnostic) or prognostication of established lung cancer (theragnostic). There are quite a few methodological issues in most of the reviewed papers. Only 5 studies, out of the 22, were externally validated. Overall, it is clear that radiomics offers great potential in improving diagnosis and patient stratification in lung cancer. It may also have a real clinical impact, as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision support in lung cancer treatment at low cos

    Development and validation of a computed tomography-based immune ecosystem diversity index as an imaging biomarker in non-small cell lung cancer

    No full text
    OBJECTIVES: To date, there are no data on the noninvasive surrogate of intratumoural immune status that could be prognostic of survival outcomes in non-small cell lung cancer (NSCLC). We aimed to develop and validate the immune ecosystem diversity index (iEDI), an imaging biomarker, to indicate the intratumoural immune status in NSCLC. We further investigated the clinical relevance of the biomarker for survival prediction. METHODS: In this retrospective study, two independent NSCLC cohorts (Resec1, n = 149; Resec2, n = 97) were included to develop and validate the iEDI to classify the intratumoural immune status. Paraffin-embedded resected specimens in Resec1 and Resec2 were stained by immunohistochemistry, and the density percentiles of CD3+, CD4+, and CD8+ T cells to all cells were quantified to estimate intratumoural immune status. Then, EDI features were extracted using preoperative computed tomography to develop an imaging biomarker, called iEDI, to determine the immune status. The prognostic value of iEDI was investigated on NSCLC patients receiving surgical resection (Resec1; Resec2; internal cohort Resec3, n = 419; external cohort Resec4, n = 96; and TCIA cohort Resec5, n = 55). RESULTS: iEDI successfully classified immune status in Resec1 (AUC 0.771, 95% confidence interval [CI] 0.759-0.783; and 0.770 through internal validation) and Resec2 (0.669, 0.647-0.691). Patients with higher iEDI-score had longer overall survival (OS) in Resec3 (unadjusted hazard ratio 0.335, 95%CI 0.206-0.546, p < 0.001), Resec4 (0.199, 0.040-1.000, p < 0.001), and TCIA (0.303, 0.098-0.944, p = 0.001). CONCLUSIONS: iEDI is a non-invasive surrogate of intratumoural immune status and prognostic of OS for NSCLC patients receiving surgical resection. KEY POINTS: • Decoding tumour immune microenvironment enables advanced biomarkers identification. • Immune ecosystem diversity index characterises intratumoural immune status noninvasively. • Immune ecosystem diversity index is prognostic for NSCLC patients

    Development and validation of a computed tomography-based immune ecosystem diversity index as an imaging biomarker in non-small cell lung cancer.

    No full text
    To date, there are no data on the noninvasive surrogate of intratumoural immune status that could be prognostic of survival outcomes in non-small cell lung cancer (NSCLC). We aimed to develop and validate the immune ecosystem diversity index (iEDI), an imaging biomarker, to indicate the intratumoural immune status in NSCLC. We further investigated the clinical relevance of the biomarker for survival prediction. In this retrospective study, two independent NSCLC cohorts (Resec1, n = 149; Resec2, n = 97) were included to develop and validate the iEDI to classify the intratumoural immune status. Paraffin-embedded resected specimens in Resec1 and Resec2 were stained by immunohistochemistry, and the density percentiles of CD3, CD4, and CD8 T cells to all cells were quantified to estimate intratumoural immune status. Then, EDI features were extracted using preoperative computed tomography to develop an imaging biomarker, called iEDI, to determine the immune status. The prognostic value of iEDI was investigated on NSCLC patients receiving surgical resection (Resec1; Resec2; internal cohort Resec3, n = 419; external cohort Resec4, n = 96; and TCIA cohort Resec5, n = 55). iEDI successfully classified immune status in Resec1 (AUC 0.771, 95% confidence interval [CI] 0.759-0.783; and 0.770 through internal validation) and Resec2 (0.669, 0.647-0.691). Patients with higher iEDI-score had longer overall survival (OS) in Resec3 (unadjusted hazard ratio 0.335, 95%CI 0.206-0.546, p < 0.001), Resec4 (0.199, 0.040-1.000, p < 0.001), and TCIA (0.303, 0.098-0.944, p = 0.001). iEDI is a non-invasive surrogate of intratumoural immune status and prognostic of OS for NSCLC patients receiving surgical resection. • Decoding tumour immune microenvironment enables advanced biomarkers identification. • Immune ecosystem diversity index characterises intratumoural immune status noninvasively. • Immune ecosystem diversity index is prognostic for NSCLC patients
    corecore