839 research outputs found

    Analysis of selected herbicide metabolites in surface and ground water of the United States

    Get PDF
    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides ─ triazine, chloroacetanilide and phenyl-urea ─ have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides ─ ethane sulfonic acid and oxanilic acid ─ are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination

    A Comparison of Patient Satisfaction with Emergency Department Opt-In and Opt-Out Rapid HIV Screening

    Get PDF
    Study objective. To compare patient satisfaction with emergency department (ED) opt-in and opt-out HIV screening. Methods. We conducted a survey in an urban ED that provided rapid HIV screening using opt-in (February 1, 2007–July 31, 2007) and opt-out (August 1, 2007–January 31, 2008) approaches. We surveyed a convenience sample of patients that completed screening in each phase. The primary outcome was patient satisfaction with HIV screening. Results. There were 207 and 188 completed surveys during the opt-in and opt-out phases, respectively. The majority of patients were satisfied with both opt-in screening (95%, 95% confidence interval [CI] = 92–98) and opt-out screening (94%, 95% CI = 89–97). Satisfaction ratings were similar between opt-in and opt-out phases even after adjusting for age, gender, race/ethnicity, and test result (adjusted odds ratio 1.3, 95% CI = 0.5–3.1). Conclusions. Emergency department patient satisfaction with opt-in and opt-out HIV screening is similarly high

    OCEANIC FLUXES FROM PROGLACIAL AND DEGLACIAL WATERSHEDS IN WESTERN GREENLAND

    Get PDF
    Weathering in western Greenland occurs in two distinct environments: proglacial watersheds that extend from the margin of the Greenland Ice Sheet (GIS) and derive water from ice melt, and deglacial watersheds that develop on terrains unconnected to the GIS and derive water from annual precipitation. Proglacial and deglacial watersheds currently provide equal amounts of runoff in western Greenland. These watersheds may contribute different solute fluxes to the oceans depending on exposure age, climate, and weathering environment. We test this hypothesis by comparing chemical compositions of streams in four deglacial watersheds (Sisimiut, Nerumaq, Qorlortoq, Kangerlussuaq) and one proglacial watershed (Watson River Akuliarusiarsuup Kuua River; AKR) along a ~160 km transect from the coast to the GIS. Recent work found that weathering reactions in the deglacial watersheds shift from being dominated by carbonate dissolution inland to sulfide oxidation near the coast. Silicate weathering, based on increased Si, Na and K concentrations, is a minor source of solutes to deglacial streams and is less extensive near the GIS than the coast, where older moraines experience greater precipitation. In general, specific conductivity (SpC: 48-301 μS/cm) and pH (7.0-8.2) increase inland as precipitation decreases and fresh mineral surfaces become more common. The AKR, in contrast, has lower average SpC (11.9 uS/cm) and pH (6.86) than the deglacial streams. Low SpC reflects dilution by ice melt and short residence time of water in the subglacial system. Proglacial flow is enriched in Si compared to deglacial flow particularly near headwaters, indicating higher silicate weathering rates in the pro- and sub-glacial systems. Low pH values indicate: 1) equilibration with atmospheric CO2 in the supraglacial system near headwaters, and 2) acid production generated by sulfide oxidation in the hyporheic zone identified by elevated SO4 concentrations. However, Ca, Mg and HCO3 are the dominant ions over the length of the AKR indicating that dissolution of carbonate is the predominant form of weathering. Our results indicate the two types of watersheds provide distinct fluxes of solutes to the oceans that are likely to change as ice sheets retreat and advance with changing climate

    Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, west Greenland

    Get PDF
    The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10−5 to 10−4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water \u3e6 m from the river continuously flowed away from the river. Approximately 1–8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy’s Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long-term evaluation throughout the melt season

    Management Implications of Molt Migration by the Atlantic Flyway Resident Population of Canada Geese, Branta canadensis

    Get PDF
    We used satellite-tracked transmitters in 2001 and 2003 to document the timing, location, and extent of molt migrations by female Canada Geese (Branta canadensis) affiliated with the Atlantic Flyway Resident Population (AFRP) of Canada Geese that breed in the temperate region of eastern North America. Twenty-seven adult females were captured during the nesting period in late May and fitted with a satellite transmitter mounted either on a plastic neck collar or backpack harness. Nests of 24 birds were destroyed late in incubation to prevent renesting and ensure nest failure; three females did not have nests. Twelve of the 27 birds (44%) made a northward migration to molt in northern Quebec, Canada: seven to the eastern coast of Hudson Bay (58°12'N, 76°60'W), three to lowland areas east of James Bay (53°30'N, 79°02'W), and two to interior locations south of Ungava Bay (55°54'N, 68°24'W). Molt migrants were present in northern Quebec from June to September, a period that coincides with breeding ground aerial surveys and banding operations conducted for Atlantic Population (AP) Canada Geese that breed in this same region of northern Quebec. With >1 million AFRP geese estimated in the Atlantic Flyway, the potential exists for substantial numbers of yearling, sub-adult, and nest-failed or non-breeding adults to molt migrate to northern breeding areas and bias efforts to survey and mark AP geese. Within AFRP breeding areas, many local flocks have reached nuisance levels. We hypothesized that by inducing molt migration in breeding adults, through destruction of nests late in incubation, we would lessen recruitment, reduce numbers of summer resident adults with young, and increase adult mortality from hunting. However, molt migration behavior was not uniform throughout our study area. Molt migrants were from rural areas in New York, Pennsylvania, and Vermont, whereas marked birds that did not make molt migrations were from more coastal regions of the flyway. The 14 birds that did not make a molt migration remained within 60 km of their banding site. A genetic comparison of these two groups revealed no detectable differences. We conclude that failure to undergo a molt migration is likely attributed to the historical origin of captive-reared birds of mixed subspecies that comprise AFRP flocks in the eastern regions of the flyway and the availability of quality local habitat, distinct from brood-rearing areas, for molting

    SEASONAL EVOLUTION AND SPATIAL DISTRIBUTION OF WEATHERING IN WESTERN GREENLAND

    Get PDF
    Through physical weathering, the Greenland Ice Sheet (GIS) produces sediments which are subsequently chemically weathered in three types of watersheds: 1) deglacial watersheds that are physically disconnected from the GIS and drain local precipitation, 2) proglacial watersheds that are hydrologically connected to the GIS, and 3) subglacial watersheds that form beneath the GIS. Chemical weathering in the glacial foreland may be important to atmospheric CO2 drawdown and oceanic fluxes of solutes, yet no holistic study exists that compares solute sources across all types of watersheds and through the melt season. Consequently, we investigated spatiotemporal changes in weathering through the 2013 ablation season from a transect of watersheds spanning the coast to the GIS in western Greenland. We sampled one proglacial (PG) watershed, from which we also assess subglacial (SG) weathering, one inland deglacial (IDG) and one coastal deglacial (CDG) watershed. A simple stoichiometric mass balance quantifies solute sources in each watershed. The principal solute source is trace carbonates in all watersheds; however, IDG has more carbonate (61 vs 36 mol%) and less silicate (3 vs 14 mol%) weathering than CDG. PG has similar carbonate (41 mol%) and silicate weathering (16 mol%) proportions to CDG, despite proximity to IDG. Weathering of biotite decreases from 12 mol% at PG to 3 mol% at CDG along an exposure age gradient, consistent with more radiogenic 87Sr/86Sr in waters at PG (0.73556) than DGC (0.71114). Carbonate weathering decreases and biotite + silicate weathering increases downstream through PG, reflecting increased weathering. Solute sources change little through time or space at IDG, but at PG, silicate weathering increases and carbonate weathering decreases as flow increases through the melt season, consistent with increased contributions of SG waters with long residence times in distributed channels. Thus, the evolution of SG through time and connections between subglacial reservoirs and main flow paths plays an important role in weathering at PG. As the GIS retreats, deglacial watersheds will constitute a greater fraction of the weathering flux and thus increased silicate weathering should alter solute fluxes to the oceans and increase atmospheric CO2 drawdown
    corecore