174 research outputs found

    FLUOROQUINOLONES IN WATER: REMOVAL ATTEMPS BY INNOVATIVE AOPS

    Get PDF
    The photocatalytic activity of TiO2 semiconductor immobilized onto the surface of glass borosilicate tubes was evaluated for measuring levofloxacin, which is an antibiotic used to treat a number of bacterial infection

    Simulated ageing of crude oil and advanced oxidation processes for water remediation since crude oil pollution

    Get PDF
    Crude oil can undergo biotic and abiotic transformation processes in the environment. This article deals with the fate of an Italian crude oil under simulated solar irradiation to understand (i) the modification induced on its composition by artificial aging and (ii) the transformations arising from different advanced oxidation processes (AOPs) applied as oil-polluted water remediation methods. The AOPs adopted were photocatalysis, sonolysis, and, simultaneously, photocatalysis and sonolysis (sonophotocatalysis). Crude oil and its water-soluble fractions underwent analysis using GC-MS, liquid-state1H-NMR, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and fluorescence. The crude oil after light irradiation showed (i) significant modifications induced by the artificial aging on its composition and (ii) the formation of potentially toxic substances. The treatment produced oil oxidation with a particular effect of double bonds oxygenation. Non-polar compounds present in the water-soluble oil fraction showed a strong presence of branched alkanes and a good amount of linear and aromatic alkanes. All remediation methods utilized generated an increase of C5 class and a decrease of C6-C9 types of compounds. The analysis of polar molecules elucidated that oxygenated compounds underwent a slight reduction after photocatalysis and a sharp decline after sonophotocatalytic degradation. Significant modifications did not occur by sonolysis

    The water we would like

    Get PDF
    Water is needed for our health: it maintains the health and integrity of every cell in the body, keeps the bloodstream liquid enough to flow through blood vessels, helps eliminate the by-products of the body’s metabolism, aids digestion, and other exceptional properties. High-quality water is needed to preserve health. Unfortunately, the environment and all its sectors are differently contaminated. This dangerous state is closely linked to increased anthropic activities (industrial and agricultural) and the use of harmful substances released without control. Old contaminants (pesticides and substances deriving from industrial activities) and new contaminants, called "emerging" (drugs, phytotoxins, body care products), can arrive in rivers, in surface and deep water, and the sea if they are not removed from the wastewater. These substances are harmful to human health because they enter the environment in quantities exceeding the natural self capacity purification of the ecosystems. We can be exposed to water-derived contaminants in different ways. For example, people can ingest small amounts of pollutants by drinking water; they can absorb pollutants through the skin while bathing or showering and during recreational activities, such as swimming, windsurfing, and water skiing; they can inhale droplets suspended in the air or vapors while taking a shower. They can also ingest foods that have been contaminated with water-borne pollutants.Wastewater treatment plants (WWTPs) cannot altogether remove most of these substances, which can easily reach the drinking water supplies, causing health problems for adults and children. Although drinking water quality is regulated and monitored in many countries, today’s increased knowledge suggests reviewing standards and guidelines on a near-permanent basis for both held and newly identified contaminants and adopting technologies as tertiary treatment processes, which could promote the easy degradation of recalcitrant compounds. It will be necessary to verify that the degradation products are less dangerous than the original molecules and that no dangerous aggregation products are formed. This communication reports some of the degradation studies carried out by our Research Teams in collaboration with foreign researchers using Advanced Oxidation Processes (AOPs) on pesticides and pharmaceuticals present in actual water samples. Photolysis and heterogeneous photocatalysis under simulated solar irradiation using two forms of TiO2 (suspended or immobilized on the surface of thin glass plates) have been investigated to assess the suitability of different oxidation processes to promote mineralization of recalcitrant substances. Transformation products (TPs) have been identified by an LC system coupled to a hybrid LTQ-FTICR (7-T) mass spectrometer (MS). To evaluate the treatment methods' effectiveness, the treated solutions' measurements have been performed using the “Microtox¼ Toxicity Test” that reports the luminescence inhibition of the marine bacteria Vibrio fischeri. During the degradation process, the temporary formation of toxic fragments was observed, which rapidly degraded to complete mineralization. Samples collected during the degradation process showed the temporary toxicity of the water. The rate of decomposition was highly dependent on the method used. Advanced oxidation processes such as TiO2/Xe-arc system, lead to a rapid decrease of the biorecalcitrant chemical concentrations in aqueous solutions, while photolysis and TiO2-coated glass are less effective. These promising results push us to continue and improver experimental trials. What is the future prospect? The creation of prototypes to be used by farmers and artisans to start with the virtuous path of water recycle

    Mass spectrometry application on the detection of Sildenafil in aqueous phases

    Get PDF
    Sildenafil, the active ingredient of Viagra (Figure n.1), is a drug helpful in solving erectile dysfunction problems and recently entered the list of emerging contaminants. The use of these pharmaceuticals is increasingly widespread among perfectly healthy young people (20 or 30 years old) who make them a dangerous abuse for "recreational" purposes together with ecstasy: the result is a synergistic amplification of their final effects, such as the feeling of euphoria, confusion, disorientation, hallucinations, tremors or, in severe cases, irregular heartbeat and even coma. According to the 2018 annual report prepared by the Italian Medicines Agency (AIFA), this compounds’ consumption had increased over time from 2.9 DDD (Defined Daily Dose assumed per 1000 inhabitants in the referred year) in 2014 to 3.6 DDD in 2018. Unfortunately, it is impossible to detect the actual quantity used from the population (young and patients) because the internet network is becoming a way of purchasing to avoid medical prescriptions. Indeed, some researchers [1] report that illicit trading with pharmaceuticals products from the Internet is not wholly conscious of the risks for health concerning the quality of these products, such as the possible presence of toxic impurities [2]. The increase in demand is powering the illegal trade via the web, and, consequently, the risk of using an ineffective/harmful to health drug is very high [3,4]. The human body does not fully utilize these drugs. An unknown quantity, probably transformed, is excreted with urine and faeces. The high consumption of this substance, globally accomplished by legal and illegal ways, and the fact that Wastewater treatment plants (WWTP) cannot remove all types of contaminants that enter the sewer legitimates thinking that they can pose a severe threat to ecosystems and human health [5]. The unambiguous analytical determination of the active parent drug and the identification of its transformation products are therefore indispensable to try understanding if the quantity found of this drug in wastewater and surface water is linked to actual medical use and to verify whether tertiary purification treatments of wastewater are effective in the removal. In this work, the identification and quantification of this pharmaceutical product in water and synthetic wastewater were performed by LC-ESI-LTQ/MS and confirmed by CID-MSn. Thanks to high mass precision and MS/MS capability, determination and structural interpretation of sildenafil and its transformation products were achieved

    Hemp chemotype definition by cannabinoids characterization using lc-esi(+)-ltq-fticr ms and infrared multiphoton dissociation

    Get PDF
    The development and application of advanced analytical methods for a comprehensive analysis of Cannabis sativa L. extracts plays a pivotal role in order to have a reliable evaluation of their chemotype definition to guarantee the efficacy and safety in pharmaceutical use. This paper deals with the qualitative and quantitative determination of cannabidiol (CBD), tetrahydro-cannabinol (THC), cannabinol (CBN), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), and cannabigerol (CBG) based on a liquid chromategraphy-mass spectrometry (LC-MS) method using electrospray ionization in positive mode (ESI+), coupled with a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). For the first time, structural information of phytocannabinoids is available upon precursor ions’ isolation within the FTICR trapping cell and subsequent fragmentation induced by infrared multiphoton dissociation (IRMPD). Such fragmentation and accurate mass measurement of product ions, alongside collision-induced dissociation (CID) within LTQ, was advantageous to propose a reliable fragmentation pattern for each compound. Then, the proposed LC-ESI(+)-LTQ-FTICR MS method was successfully applied to the hemp chemotype definition of three registered Italian accessions of hemp C. sativa plants (Carmagnola C.S., Carmagnola, and Eletta Campana), thus resulting in the Eletta Campana accession being the best one for cannabis product manufacturing

    Use of physical-chemical-biological techniques for the analysis of an arrowhead

    Get PDF
    The study of metal artifacts has long been the subject of study by many researchers who are trying to reconstruct the habits and customs of vanished civilizations. In particular, the chemical-physical characterization is important in order to acquire information on the origin of the raw materials used for their manufacture, on the production techniques and on the investigation of corrosion phenomena [1,2]. The aim of this study was the chemical-physical-biological characterization of an arrowhead coming from archaeological excavations of the acropolis of Heracleia, stored in the National Archaeological Museum of Siritide in Policoro (Basilicata, Italy). Through through a multi-analytic approach (Optical microscope, Raman, XRF, XPS, biological analysis), the characterization of the arrowhead was carried out and the results obtained gave information about the metals used and the state of corrosion. Raman analysis highlighted the corrosion linked to the presence of Lead Dioxide (Plattnerite) as reported in Figure 2., data confirmed also by the XPS analysis.Since plattnerite is one of the corrosion products of lead [3,4], the information obtained from the Raman and XPS analysis can also provide indications and soil chemical-physical characteristics (e.g. humidity, pH, chlorine content, and others) of the archaeological environment in which the arrowhead was found. All this demonstrates and confirms how important diagnostics is to retrieve information from a past time

    Damage of calcarenite stone in archaeological site: relationship between wheathering, pollution and biological agents

    Get PDF
    For thousand of years, when magnificence and beauty were the goals of architecture, stones were the most widely used durable materials. The deterioration of building stones causes irreparable damages to our cultural heritage, not only as loss of architecture and ancient art, but especially as loss of symbols of human cultural identity and continuity. Sun, frost, wind, rain, pollution etc. contribute to a gradual process of weathering. Biological activity also plays a role and its association with physico-chemical phenomena should be considered essential for understanding long term deterioration. In this contest appear necessary to understand the weight of each single environmental parameter in order to assess and to plan not only a suitable restoration project and a preventive maintenance but also to test natural products (specific biocides) to be used to limit the degradation caused by bio deterioration agents We studied the influence and synergistic effects of climatic parameters (temperature, light irradiation, wind intensity, humidity), pollution (SO2, CO, NO2, Ozone and heavy metals), and biological attacks on a building placed between an archaeological site of Lavello, a little town located in the Basilicata Region, and the industrial area surrounding this town. Moreover, X-ray diffraction, X-ray induced photoelectron spectroscopy (XPS), X-ray fluorescence spectrometry (XRF), ground penetrating radar and geo-electrical measurements (GPR and MGE), Fourier Transform Infrared spectroscopy (FT-IR) and biological investigations were carried out on powdered calcarenite and on stones samples. Preliminary results show that climatic parameters and pollution undermine the structure and the compactness of stones (i.e. micro-fractures, increase of salts’ concentration) favouring the biological colonization (bacteria, mushrooms and lichens) especially in south–east direction of prevailing winds

    Classification, Toxicity and Bioactivity of Natural Diterpenoid Alkaloids

    Get PDF
    Diterpenoid alkaloids are natural compounds having complex structural features with many stereo-centres originating from the amination of natural tetracyclic diterpenes and produced primarily from plants in the Aconitum, Delphinium, Consolida genera. Corals, Xenia, Okinawan/Clavularia, Alcyonacea (soft corals) and marine sponges are rich sources of diterpenoids, despite the difficulty to access them and the lack of availability. Researchers have long been concerned with the potential beneficial or harmful effects of diterpenoid alkaloids due to their structural complexity, which accounts for their use as pharmaceuticals as well as their lousy reputation as toxic substances. Compounds belonging to this unique and fascinating family of natural products exhibit a broad spectrum of biological activities. Some of these compounds are on the list of clinical drugs, while others act as incredibly potent neurotoxins. Despite numerous attempts to prepare synthetic products, this review only introduces the natural diterpenoid alkaloids, describing 'compounds' structures and classifications and their toxicity and bioactivity. The purpose of the review is to highlight some existing relationships between the presence of substituents in the structure of such molecules and their recognized bioactivity

    Detection of Eight Cannabinoids and One Tracer in Wastewater and River Water by SPE-UPLC–ESI-MS/MS

    Get PDF
    The consumption of illicit drugs represents a global social and economic problem. Using suitable analytical methods, monitoring, and detection of different illegal drugs residues and their metabolites in wastewater samples can help combat this problem. Our article defines a method to develop, validate, and practically applicate a rapid and robust analytical process for the evaluation of six naturally occurring cannabinoids (CBG, CBD, CBDV, CBN, THC, THCV), two cannabinoids in acidic form (CBDA, THCA-A), and the major cannabis-related human metabolite (THC-COOH). After SPE offline enrichment, we used a UPLC–ESI-MS/MS system, which permitted the determination of several by-products. Studied matrices were samples of different origins: (i) effluent water from a wastewater treatment plant in the Porto urban area; (ii) environmental water from Febros River, the last left-bank tributary of the Douro River. The multi-residue approach was substantiated and successfully employed to analyze the water samples collected in the above locations. The rapid and precise quantification of nine different cannabinoids in different water samples occurred within nine minutes at the ng L−1 level. The appearance of dozens of ng L−1 of some cannabis secondary metabolites, such as CBD, CBDA, CBN, THCA-A, indicates this plant species’ widespread usage among the general population in the considered area

    Removal of imidacloprid from polluted water using adsorption and membrane separation technologies

    Get PDF
    In this work, the stability of imidacloprid in fresh water and sludge was studied. The results revealed that the pesticide is unstable in both media. In freshwater, it underwent hydrolysis whereas a degradation to several metabolites has been observed in sludge. The rate constants for the hydrolysis and degradation at 25°C were 0.0.0067 and 0.0.0099 d–1, respectively. Monitoring the degradation of imidacloprid in sludge by high-pressure liquid chromatography-mass spectrometry (HPLC-MS) revealed that five metabolites have emerged during the study. These metabolites include imidacloprid urea, imidacloprid-guanidine, 6-hydroxynicotinic acid, an olefin, and 5-hydroxy, 1-(6-chloro-3-pyridylmethyl)-2-(nitroimino)-imidazolidin-5-ol. The efficiency of Al-Quds University Wastewater Treatment Plant towards the removal of imidacloprid indicates that the ultrafiltration-hollow fiber unit was insufficient, whereas the ultrafiltration-spiral wound, activated carbon, and reverse osmosis units were efficient for complete removal of the pesticide. Adsorption experiments of imidacloprid using either activated charcoal or micelle-clay complex were found to fit Langmuir isotherms better than Freundlich isotherm. The data demonstrate a higher Langmuir Qmax value for the activated charcoal (126.6 mg g–1) when compared to the micelle-clay complex (11.76 mg g–1). Filtration column experiments, conducted with mixed micelle-clay complex and sand (using a ratio of 1/50 by mass) at a flow rate of 2 mL min–1 and influent concentration of 50 mg L–1, revealed that a sufficient removal of imidacloprid was achieved in the first fraction of 100 mL elution. These findings indicate that the adsorption technology using the micelle-clay complex provides efficient removal of imidacloprid in continuous flow mode
    • 

    corecore