9 research outputs found

    Observation of Pure Spin Transport in a Diamond Spin Wire

    Full text link
    Spin transport electronics - spintronics - focuses on utilizing electron spin as a state variable for quantum and classical information processing and storage. Some insulating materials, such as diamond, offer defect centers whose associated spins are well-isolated from their environment giving them long coherence times; however, spin interactions are important for transport, entanglement, and read-out. Here, we report direct measurement of pure spin transport - free of any charge motion - within a nanoscale quasi 1D 'spin wire', and find a spin diffusion length ~ 700 nm. We exploit the statistical fluctuations of a small number of spins (N\sqrt{N} < 100 net spins) which are in thermal equilibrium and have no imposed polarization gradient. The spin transport proceeds by means of magnetic dipole interactions that induce flip-flop transitions, a mechanism that can enable highly efficient, even reversible, pure spin currents. To further study the dynamics within the spin wire, we implement a magnetic resonance protocol that improves spatial resolution and provides nanoscale spectroscopic information which confirms the observed spin transport. This spectroscopic tool opens a potential route for spatially encoding spin information in long-lived nuclear spin states. Our measurements probe intrinsic spin dynamics at the nanometre scale, providing detailed insight needed for practical devices which seek to control spin.Comment: 7 pages, 2 figures, under consideration at Nature Nanotechnolog

    Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis

    Get PDF
    FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1–5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2–CD44–SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state

    The needs of foster children and how to satisfy them:A systematic review of the literature

    Get PDF
    Family foster care deeply influences the needs of children and how these are satisfied. To increase our knowledge of foster children’s needs and how these are conceptualized, this paper presents a systematic literature review. Sixty- four empirical articles from six databases were reviewed and categorized (inter-rater agreement K = .78) into four categories: medical, belongingness, psychological and self-actualization needs. The results give a complete overview of needs that are specific to foster children, and what can be implemented to satisfy these needs. This study shows psychological needs are studied more often compared to the other categories, which specially relates to much attention for mental health problems. Furthermore, most articles focus on how to satisfy the needs of foster children and provide no definition or concrete conceptualization of needs. Strikingly, many articles focus on children’s problems instead of their needs, and some even use these terms interchangeably. This review illustrates that future research should employ a proper conceptualization of needs, which could also initiate a shift in thinking about needs instead of problems

    Fasting Substrate Concentrations Predict Cardiovascular Outcomes in the CANagliflozin cardioVascular Assessment Study (CANVAS)

    No full text
    OBJECTIVE To examine whether the circulating substrate mix may be related to the incidence of heart failure (HF) and cardiovascular (CV) mortality and how it is altered by canagliflozin treatment. RESEARCH DESIGN AND METHODS We measured fasting glucose, free fatty acids (FFA), glycerol, b-hydroxybutyrate, acetoacetate, lactate, and pyruvate concentrations in 3,581 samples from the CANagliflozin cardioVascular Assessment Study (CANVAS) trial at baseline and at 1 and 2 years after randomization. Results were analyzed by univariate and multivariate Cox proportional hazards models. RESULTS Patients in the lowest baseline FFA tertile were more often men with a longer duration of type 2 diabetes (T2D), higher urinary albumin excretion, lower HDL-cholesterol levels, higher history of CV disease (CVD), and higher use of statins and insulin. When all seven metabolites were used as predictors, FFA were inversely associated with incident hospitalized HF (hazard ratio [HR] 0.33 [95% CI 0.21–0.55]), while glycerol was a positive predictor (2.21 [1.45–3.35]). In a model further adjusted for 16 potential confounders, including prior HF and CVD and pharmacologic therapies, FFA remained a significant negative predictor. FFA and glycerol also predicted CV mortality (HR 0.53 [95% CI 0.35–0.81] and 1.81 [1.26–2.58], respectively) and allcause death (0.50 [0.36–0.70] and 1.64 [1.22–2.18]). When added to these models, background insulin therapy was an independent positive predictor of risk of death. Canagliflozin treatment significantly increased plasma FFA and b-hydroxybutyrate regardless of background antihyperglycemic therapy. CONCLUSIONS A constitutive metabolic setup consisting of higher lipolysis may be beneficial in delaying or preventing hospitalized HF; a further stimulation of lipolysis by canagliflozin may reinforce this influence

    Identification of the tumour transition states occurring during EMT.

    No full text
    In cancer, the epithelial-to-mesenchymal transition (EMT) is associated with tumour stemness, metastasis and resistance to therapy. It has recently been proposed that, rather than being a binary process, EMT occurs through distinct intermediate states. However, there is no direct in vivo evidence for this idea. Here we screen a large panel of cell surface markers in skin and mammary primary tumours, and identify the existence of multiple tumour subpopulations associated with different EMT stages: from epithelial to completely mesenchymal states, passing through intermediate hybrid states. Although all EMT subpopulations presented similar tumour-propagating cell capacity, they displayed differences in cellular plasticity, invasiveness and metastatic potential. Their transcriptional and epigenetic landscapes identify the underlying gene regulatory networks, transcription factors and signalling pathways that control these different EMT transition states. Finally, these tumour subpopulations are localized in different niches that differentially regulate EMT transition states.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore