2,672 research outputs found
Promoting Community and Population Health in Public Health and Medicine: A Stepwise Guide to Initiating and Conducting Community-engaged Research
Various methods, approaches, and strategies designed to understand and reduce health disparities, increase health equity, and promote community and population health have emerged within public health and medicine. One such approach is community-engaged research. While the literature describing the theory, principles, and rationale underlying community engagement is broad, few models or frameworks exist to guide its implementation. We abstracted, analyzed, and interpreted data from existing project documentation including proposal documents, project-specific logic models, research team and partnership meeting notes, and other materials from 24 funded community-engaged research projects conducted over the past 17 years. We developed a 15-step process designed to guide the community-engaged research process. The process includes steps such as: networking and partnership establishment and expansion; building and maintaining trust; identifying health priorities; conducting background research, prioritizing âwhat to take onâ; building consensus, identifying research goals, and developing research questions; developing a conceptual model; formulating a study design; developing an analysis plan; implementing the study; collecting and analyzing data; reviewing and interpreting results; and disseminating and translating findings broadly through multiple channels. Here, we outline and describe each of these steps
Multicenter evaluation of computer automated versus traditional surveillance of hospital-acquired bloodstream infections
Objective.Central lineâassociated bloodstream infection (BSI) rates are a key quality metric for comparing hospital quality and safety. Traditional BSI surveillance may be limited by interrater variability. We assessed whether a computer-automated method of central lineâassociated BSI detection can improve the validity of surveillance.Design.Retrospective cohort study.Setting.Eight medical and surgical intensive care units (ICUs) in 4 academic medical centers.Methods.Traditional surveillance (by hospital staff) and computer algorithm surveillance were each compared against a retrospective audit review using a random sample of blood culture episodes during the period 2004â2007 from which an organism was recovered. Episode-level agreement with audit review was measured with Îș statistics, and differences were assessed using the test of equal Îș coefficients. Linear regression was used to assess the relationship between surveillance performance (Îș) and surveillance-reported BSI rates (BSIs per 1,000 central lineâdays).Results.We evaluated 664 blood culture episodes. Agreement with audit review was significantly lower for traditional surveillance (Îș [95% confidence interval (CI)] = 0.44 [0.37â0.51]) than computer algorithm surveillance (Îș [95% CI] [0.52â0.64]; P = .001). Agreement between traditional surveillance and audit review was heterogeneous across ICUs (P = .001); furthermore, traditional surveillance performed worse among ICUs reporting lower (better) BSI rates (P = .001). In contrast, computer algorithm performance was consistent across ICUs and across the range of computer-reported central lineâassociated BSI rates.Conclusions.Compared with traditional surveillance of bloodstream infections, computer automated surveillance improves accuracy and reliability, making interfacility performance comparisons more valid.Infect Control Hosp Epidemiol 2014;35(12):1483â1490</jats:sec
Coarse Particulate Matter (PM(2.5â10)) Affects Heart Rate Variability, Blood Lipids, and Circulating Eosinophils in Adults with Asthma
INTRODUCTION: We investigated whether markers of airway and systemic inflammation, as well as heart rate variability (HRV) in asthmatics, change in response to fluctuations in ambient particulate matter (PM) in the coarse [PM with aerodynamic diameter 2.5â10 ÎŒm (PM(2.5â10))] and fine (PM(2.5)) size range. METHODS: Twelve adult asthmatics, living within a 30-mile radius of an atmospheric monitoring site in Chapel Hill, North Carolina, were followed over a 12-week period. Daily PM(2.5â10) and PM(2.5) concentrations were measured separately for each 24-hr period. Each subject had nine clinic visits, at which spirometric measures and peripheral blood samples for analysis of lipids, inflammatory cells, and coagulation-associated proteins were obtained. We also assessed HRV [SDNN24HR (standard deviation of all normal-to-normal intervals in a 24-hr recording), ASDNN5 (mean of the standard deviation in all 5-min segments of a 24-hr recording)] with four consecutive 24-hr ambulatory electrocardiogram measurements. Linear mixed models with a spatial covariance matrix structure and a 1-day lag were used to assess potential associations between PM levels and cardiopulmonary end points. RESULTS: For a 1-ÎŒg/m(3) increase in coarse PM, SDNN24HR, and ASDNN5 decreased 3.36% (p = 0.02), and 0.77%, (p = 0.05) respectively. With a 1-ÎŒg/m(3) increase in coarse PM, circulating eosinophils increased 0.16% (p = 0.01), triglycerides increased 4.8% (p = 0.02), and very low-density lipoprotein increased 1.15% (p = 0.01). No significant associations were found with fine PM, and none with lung function. CONCLUSION: These data suggest that small temporal increases in ambient coarse PM are sufficient to affect important cardiopulmonary and lipid parameters in adults with asthma. Coarse PM may have underappreciated health effects in susceptible populations
Characterization of Culex Flavivirus (Flaviviridae) strains isolated from mosquitoes in the United States and Trinidad
AbstractRecent reports indicate that flaviviruses similar to the cell fusing agent virus (CFAV) naturally infect a wide variety of mosquito species. These newly recognized insect-specific viruses comprise a distinct CFAV complex within the genus Flavivirus. Here, we describe the isolation and characterization of nine strains of Culex flavivirus (Cx FV), a member of the CFAV complex, from mosquitoes collected in the United States (East Texas) and Trinidad. Phylogenetic analyses of the envelope protein gene sequences of these nine mosquito isolates with those of other CFAV complex flaviviruses in GenBank indicate that the U.S. isolates group with CxFV isolates from Asia (Japan and Indonesia), while the Trinidad isolates are more similar to CxFV isolates from Central America. A discussion follows on the possible biological significance of the CFAV complex flaviviruses
Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes.
BACKGROUND: Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests.
OBJECTIVE: To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping.
DESIGN, SETTING, AND PARTICIPANTS: We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)).
OUTCOME MEASUREMENTS: Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves.
RESULTS AND LIMITATIONS: The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p
CONCLUSIONS: A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathologic differences were found among subtypes based on global expression patterns.
PATIENT SUMMARY: Molecular subtyping of prostate cancer can be achieved using extra data generated from a clinical-grade, genome-wide expression-profiling prognostic assay (Decipher). Transcriptomic and clinical analysis support three distinct molecular subtypes: (1) m-ERG(+), (2) m-ETS(+), and (3) m-SPINK1(+)/triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Incorporation of subtyping into a clinically available assay may facilitate additional applications beyond routine prognosis
A low density of 0.8 g/cc for the Trojan binary asteroid 617 Patroclus
The Trojan population consists of two swarms of asteroids following the same
orbit as Jupiter and located at the L4 and L5 Lagrange points of the
Jupiter-Sun system (leading and following Jupiter by 60 degrees). The asteroid
617 Patroclus is the only known binary Trojan (Merline et al. 2001). The orbit
of this double system was hitherto unknown. Here we report that the components,
separated by 680 km, move around the system centre of mass, describing roughly
a circular orbit. Using the orbital parameters, combined with thermal
measurements to estimate the size of the components, we derive a very low
density of 0.8 g/cc. The components of Patroclus are therefore very porous or
composed mostly of water ice, suggesting that they could have been formed in
the outer part of the solar system.Comment: 10 pages, 3 figures, 1 tabl
Recommended from our members
High-Resolution Structures and Orientations of Antimicrobial Peptides Piscidin 1 and Piscidin 3 in Fluid Bilayers Reveal Tilting, Kinking, and Bilayer Immersion
While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphatidylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphatidylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabilization in bacterial cell membrane mimics. Structural refinement of 1Hâ15N dipolar couplings and 15N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, Ï, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, Ï, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their Ï angles (<10°) and significant difference in their Ï angles (âŒ25°). Remarkably, the kink, at the end of a G(X)4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt Ï angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger Ï angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 Ă
more deeply inserted than p1 in PE/PG. In contrast to the ideal α-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted α-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie âŒ1.2â3.6 Ă
below the plane defined by the C2 atoms of the lipid acyl chains
- âŠ