944 research outputs found

    Post-processing partitions to identify domains of modularity optimization

    Full text link
    We introduce the Convex Hull of Admissible Modularity Partitions (CHAMP) algorithm to prune and prioritize different network community structures identified across multiple runs of possibly various computational heuristics. Given a set of partitions, CHAMP identifies the domain of modularity optimization for each partition ---i.e., the parameter-space domain where it has the largest modularity relative to the input set---discarding partitions with empty domains to obtain the subset of partitions that are "admissible" candidate community structures that remain potentially optimal over indicated parameter domains. Importantly, CHAMP can be used for multi-dimensional parameter spaces, such as those for multilayer networks where one includes a resolution parameter and interlayer coupling. Using the results from CHAMP, a user can more appropriately select robust community structures by observing the sizes of domains of optimization and the pairwise comparisons between partitions in the admissible subset. We demonstrate the utility of CHAMP with several example networks. In these examples, CHAMP focuses attention onto pruned subsets of admissible partitions that are 20-to-1785 times smaller than the sets of unique partitions obtained by community detection heuristics that were input into CHAMP.Comment: http://www.mdpi.com/1999-4893/10/3/9

    Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly

    Get PDF
    Pancreatic cancer is a devastating disease with a dismal prognosis and poor treatment outcomes. Searching for new agents for pancreatic cancer treatment is of great significance. We previously identified a novel activity of compound C150 to inhibit pancreatic cancer epithelial-to-mesenchymal transition (EMT). Here, we further revealed its mechanism of action. C150 induced ER stress in pancreatic cancer cells and subsequently increased proteasome activity by enhancing proteasome assembly, which subsequently enhanced the degradation of critical EMT transcription factors (EMT-TFs). In addition, as cellular responses to ER stress, autophagy was elevated, and general protein synthesis was inhibited in pancreatic cancer cells. Besides EMT inhibition, the C150-induced ER stress resulted in G2/M cell cycle arrest, which halted cell proliferation and led to cellular senescence. In an orthotopic syngeneic mouse model, an oral dose of C150 at 150 mg/kg 3Ă— weekly significantly increased survival of mice bearing pancreatic tumors, and reduced tumor growth and ascites occurrence. These results suggested that compound C150 holds promises in comprehensively inhibiting pancreatic cancer progression

    Drug Repurposing for Gastrointestinal Stromal Tumor

    Get PDF
    Despite significant treatment advances over the past decade, metastatic gastrointestinal stromal tumor (GIST) remains largely incurable. Rare diseases, such as GIST, individually affect small groups of patients but collectively are estimated to affect 25–30 million people in the U.S. alone. Given the costs associated with the discovery, development and registration of new drugs, orphan diseases such as GIST are often not pursued by mainstream pharmaceutical companies. As a result, “drug repurposing” or “repositioning”, has emerged as an alternative to the traditional drug development process. In this study we screened 796 FDA-approved drugs and found that two of these compounds, auranofin and fludarabine phosphate, effectively and selectively inhibited the proliferation of GISTs including imatinib-resistant cells. One of the most notable drug hits, auranofin (Ridaura®), an oral, gold-containing agent approved by the FDA in 1985 for the treatment of rheumatoid arthritis (RA), was found to inhibit thioredoxin reductase (TrxR) activity and induce reactive oxygen species (ROS) production, leading to dramatic inhibition of GIST cell growth and viability. Importantly, the anti-cancer activity associated with auranofin was independent of IM resistant status, but was closely related to the endogenous and inducible levels of ROS, therefore is prior to IM response. Coupled with the fact auranofin has an established safety profile in patients, these findings suggest for the first time that auranofin may have clinical benefit for GIST patients, particularly in those suffering from imatinib-resistant and recurrent forms of this disease

    In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma.

    Get PDF
    The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease

    Novel Compound C150 Inhibits Pancreatic Cancer Cell Epithelial-to-Mesenchymal Transition and Tumor Growth in Mice

    Get PDF
    Pancreatic cancer cell epithelial-to-mesenchymal transition (EMT) is an important contributor to cell invasion and tumor progression. Therefore, targeting EMT may be beneficial for pancreatic cancer treatment. The aim of the present study was to report on the inhibitory effect of the novel compound C150 on the EMT of pancreatic cancer cells. C150 inhibited cell proliferation in multiple pancreatic cancer cells with IC50 values of 1-2.5 ÎĽM, while in an non-cancerous pancreatic epithelial cell line hTERT-HPNE the IC50 value was >12.5 ÎĽM. C150 significantly inhibited pancreatic cancer cell migration and invasion, as demonstrated by 3-dimensional cell invasion, wound healing and Boyden chamber Transwell migration-invasion assays. Moreover, C150 treatment decreased MMP-2 gene expression in PANC-1 cells and reduced MMP-2 activity in gelatin zymography assay. In an orthotopic mouse model of pancreatic cancer, C150 significantly reduced tumor growth at the dose of 15 mg/kg by intraperitoneal injection three times per week. Furthermore, C150 enhanced protein degradation of Snail, an important EMT-promoting transcription factor, and decreased the expression of the mesenchymal marker N-cadherin, while it increased the expression of the epithelial markers zonula occludens-1 and claudin-1. The findings of the present study suggested that C150 is a novel EMT inhibitor that may be promising for inhibiting pancreatic cancer growth and metastasis

    Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis.

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during colon tumorigenesis and is abnormally present within the cytoplasm, where it post-transcriptionally regulates genes through its interaction with 3\u27UTR AU-rich elements (AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth inhibition and increased apoptotic gene expression, while similar treatment doses in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 expression in tumors. These findings provide evidence that therapeutic strategies to target HuR in CRC warrant further investigation in an effort to move this approach to the clinic

    An investigation of minimisation criteria

    Get PDF
    Minimisation can be used within treatment trials to ensure that prognostic factors are evenly distributed between treatment groups. The technique is relatively straightforward to apply but does require running tallies of patient recruitments to be made and some simple calculations to be performed prior to each allocation. As computing facilities have become more widely available, minimisation has become a more feasible option for many. Although the technique has increased in popularity, the mode of application is often poorly reported and the choice of input parameters not justified in any logical way

    Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil

    Get PDF
    Iron intakes calculated from one-day weighed records were compared with those from same day analyzed duplicate diet composites collected from 120 Malawian women living in two rural districts with contrasting soil mineralogy and where threshing may contaminate cereals with soil iron. Soils and diet composites from the two districts were then subjected to a simulated gastrointestinal digestion and iron availability in the digests measured using a Caco-2 cell model. Median analyzed iron intakes (mg/d) were higher (p < 0.001) than calculated intakes in both Zombwe (16.6 vs. 10.1 mg/d) and Mikalango (29.6 vs. 19.1 mg/d), attributed to some soil contaminant iron based on high Al and Ti concentrations in diet composites. A small portion of iron in acidic soil from Zombwe, but not Mikalango calcareous soil, was bioavailable, as it induced ferritin expression in the cells, and may have contributed to higher plasma ferritin and total body iron for the Zombwe women reported earlier, despite lower iron intakes. In conclusion, iron intakes calculated from food composition data were underestimated, highlighting the importance of analyzing duplicate diet composites where extraneous contaminant iron from soil is likely. Acidic contaminant soil may make a small but useful contribution to iron nutrition

    How to Teach Health IT Evaluation: Recommendations for Health IT Evaluation Courses

    Get PDF
    Systematic health IT evaluation studies are needed to ensure system quality and safety and to provide the basis for evidence-based health informatics. Well-trained health informatics specialists are required to guarantee that health IT evaluation studies are conducted in accordance with robust standards. Also, policy makers and managers need to appreciate how good evidence is obtained by scientific process and used as an essential justification for policy decisions. In a consensus-based approach with over 80 experts in health IT evaluation, recommendations for the structure, scope and content of health IT evaluation courses on the master or postgraduate level have been developed, supported by a structured analysis of available courses and of available literature. The recommendations comprise 15 mandatory topics and 15 optional topics for a health IT evaluation course
    • …
    corecore