181 research outputs found

    Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications

    Full text link
    Matching tissue engineering scaffold modulus to that of native tissue is highly desirable. Effective scaffold modulus can be altered through changes in base material modulus and/or scaffold pore architecture. Because the latter may be restricted by tissue in-growth requirements, it is advantageous to be able to alter the base material modulus of a chosen scaffold material. Here, we show that the bulk modulus of poly(glycerol sebacate) (PGS) can be changed by varying molar ratios during prepolymer synthesis and by varying curing time. We go on to show that PGS can be used to create 3D designed scaffolds via solid freeform fabrication methods with modulus values that fall within the ranges of native articular cartilage equilibrium modulus. Furthermore, using base material modulus inputs, homogenization finite element analysis can effectively predict the tangent modulus of PGS scaffold designs, which provides a significant advantage for designing new cartilage regeneration scaffolds. Lastly, we demonstrate that this relatively new biomedical material supports cartilaginous matrix production by chondrocytes in vitro . © 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75767/1/32653_ftp.pd

    Bone Morphogenetic Protein-2 Adsorption onto Poly-ɛ-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios

    Full text link
    Background: One strategy to reconstruct large bone defects is to prefabricate a vascularized flap by implanting a biomaterial scaffold with associated biologics into the latissimus dorsi and then transplanting this construct to the defect site after a maturation period. This strategy, similar to all clinically and regulatory feasible biologic approaches to surgical reconstruction, requires the ability to quickly (<1?h within an operating room) and efficiently bind biologics to scaffolds. It also requires the ability to localize biologic delivery. In this study, we investigated the efficacy of binding bone morphogenetic protein-2 (BMP2) to poly-?-caprolactone (PCL) using adsorption and conjugation as a function of time. Methods: BMP2 was adsorbed (Ads) or conjugated (Conj) to PCL scaffolds with the same three-dimensional printed architecture while altering exposure time (0.5, 1, 5, and 16?h), temperature (4°C, 23°C), and BMP2 concentration (1.4, 5, 20, and 65??g/mL). The in vitro release was quantified, and C2C12 cell alkaline phosphatase (ALP) expression was used to confirm bioactivity. Scaffolds with either 65 or 20??g/mL Ads or Conj BMP2 for 1?h at 23°C were implanted subcutaneously in mice to evaluate in vivo bone regeneration. Micro-computed tomography, compression testing, and histology were performed to characterize bone regeneration. Results: After 1?h exposure to 65??g/mL BMP2 at 23°C, Conj and Ads resulted in 12.83±1.78 and 10.78±1.49??g BMP2 attached, respectively. Adsorption resulted in a positive ALP response and had a small burst release; whereas conjugation provided a sustained release with negligible ALP production, indicating that the conjugated BMP2 may not be bioavailable. Adsorbed 65??g/mL BMP2 solution resulted in the greatest regenerated bone volume (15.0±3.0?mm3), elastic modulus (20.1±3.0?MPa), and %bone ingrowth in the scaffold interior (17.2%±5.4%) when compared with conjugation. Conclusion: Adsorption may be optimal for the clinical application of prefabricating bone flaps due to BMP2 binding in a short exposure time, retained BMP2 bioactivity, and bone growth adhering to scaffold geometry and into pores with healthy marrow development.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140249/1/ten.tec.2014.0377.pd

    Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66317/1/j.1551-2916.2006.01143.x.pd

    Three‐dimensional polycaprolactone scaffold‐conjugated bone morphogenetic protein‐2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification

    Full text link
    As articular cartilage is avascular, and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for regeneration after severe damage. The treatment of such damage has been challenging due to the limited availability of autologous healthy cartilage and lengthy and expensive cell isolation and expansion procedures. Hence, the use of bone morphogenetic protein‐2 (BMP‐2), a potent regulator of chondrogenic expression, has received considerable attention in cartilage and osteochondral tissue engineering. However, the exact role of BMP‐2 in cartilage repair has been postulated to promote both cartilage formation and subsequent cartilage degradation through hypertrophy and endochondral ossification. Furthermore, it is likely that the manner in which BMP‐2 is presented to chondrocytes will influence the physiologic pathway (repair vs. degeneration). This study investigates the relative influence of BMP‐2 on cartilage matrix and potential subsequent bone matrix production using primary chondrocytes seeded on designed 3D polycaprolactone (PCL) scaffolds with chemically conjugated BMP‐2. The results show that chemically conjugated BMP‐2 PCL scaffolds can promote significantly greater cartilage regeneration from seeded chondrocytes both in vitro and in vivo compared with untreated scaffolds. Furthermore, our results demonstrate that the conjugated BMP‐2 does not particularly accelerate endochondral ossification even in a readily permissible and highly vascular in vivo environment compared with untreated PCL scaffolds. This study not only reveals the potential use of the BMP‐2 conjugation delivery method for enhanced cartilage tissue formation but also gives new insights for the effects of conjugated BMP‐2 on cartilage regeneration and osteochondral ossification. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92144/1/33249_ftp.pd

    Tissue-Engineered Cartilage Constructs Using Composite Hyaluronic Acid/Collagen I Hydrogels and Designed Poly(Propylene Fumarate) Scaffolds

    Full text link
    Our approach to cartilage tissue-engineering scaffolds combines image-based design and solid free-form (SFF) fabrication to create load-bearing constructs with user-defined parameters. In this study, 3-dimensional scaffolds with cubic and ellipsoidal pore architecture were fabricated using poly(propylene fumarate) (PPF). To increase seeding efficiency and cellular retention, hydrogels were used to deliver cells into the scaffolds. The first objective of this study was to evaluate the concentrations of composite hyaluronic acid (HyA) and collagen I hydrogels best able to stimulate proteoglycan synthesis in porcine chondrocytes in vitro and in vivo. The second objective was to evaluate the differences in extracellular matrix production due to pore geometry and scaffold design. For the in vitro assessment, chondrocytes were encapsulated in collagen I hydrogels with varying concentrations of HyA. Hydrogels were cultured for 1 and 2 weeks, and then the sulfated glycosaminoglycan (sGAG) content was quantified using a dimethyl-methylene blue assay. The concentration of HyA best able to increase ECM synthesis was 5% HyA/collagen I, or 0.23 mg/mL HyA. The results from the in vitro experiment were used as culture parameters for the in vivo analysis. Composite 5% HyA/collagen I or collagen I-only hydrogels were used to seed chondrocytes into SFF-fabricated scaffolds made of PPF with designed cubic or ellipsoidal pore geometry. The scaffolds were implanted subcutaneously in immunocompromised mice for 4 weeks. Histomorphometric analyses of sections stained with Safranin O were used to quantify the amount of ECM deposited by cells in the scaffolds. Scaffolds seeded with 5% HyA/collagen hydrogels had significantly greater areas of positive Safranin O staining (approximately 60%, compared with 30% for scaffolds with collagen I hydrogels only), indicating that greater numbers of chondrocytes retained their metabolic activity in the ectopic environment. These scaffolds also had greater stain intensities (corresponding to greater amounts of sGAG in the ECM) than their counterparts seeded with collagen I hydrogels alone. Significant differences in matrix production were not found between the scaffold pore designs. Overall, these results indicate that a combination of composite HyA hydrogels and designed SFF scaffolds could provide a functional tissue-engineered construct for cartilage repair with enhanced tissue regeneration in a load-bearing scaffold.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63183/1/ten.2006.0117.pd

    Effect of Polycaprolactone Scaffold Permeability on Bone Regeneration In Vivo

    Full text link
    Successful bone tissue engineering depends on the scaffold's ability to allow nutrient diffusion to and waste removal from the regeneration site, as well as provide an appropriate mechanical environment. Since bone is highly vascularized, scaffolds that provide greater mass transport may support increased bone regeneration. Permeability encompasses the salient features of three-dimensional porous scaffold architecture effects on scaffold mass transport. We hypothesized that higher permeability scaffolds will enhance bone regeneration for a given cell seeding density. We manufactured poly---caprolactone scaffolds, designed to have the same internal pore design and either a low permeability (0.688-10-7m4/N-s) or a high permeability (3.991-10-7m4/N-s), respectively. Scaffolds were seeded with bone morphogenic protein-7-transduced human gingival fibroblasts and implanted subcutaneously in immune-compromised mice for 4 and 8 weeks. Micro-CT evaluation showed better bone penetration into high permeability scaffolds, with blood vessel infiltration visible at 4 weeks. Compression testing showed that scaffold design had more influence on elastic modulus than time point did and that bone tissue infiltration increased the mechanical properties of the high permeability scaffolds at 8 weeks. These results suggest that for polycaprolactone, a more permeable scaffold with regular architecture is best for in vivo bone regeneration. This finding is an important step toward the end goal of optimizing a scaffold for bone tissue engineering.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90462/1/ten-2Etea-2E2010-2E0560.pd

    Tissue Formation and Vascularization in Anatomically Shaped Human Joint Condyle Ectopically in Vivo

    Full text link
    Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 15 15mm3. A composite of poly-ɛ-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400ÎŒm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats, hMSCs generated not only significantly more blood vessels, but also significantly larger-diameter vessels than hMSC-derived osteoblasts, although hMSC-derived osteoblasts yielded mineralized tissue in microchannels. Chondrocytes in safranin-O-positive glycosaminoglycan matrix were present in the cartilage layer seeded with hMSC-derived chondrogenic cells, although significantly more cells were present in the cartilage layer seeded with hMSCs than hMSC-derived chondrocytes. Together, MSCs elaborate substantially more angiogenesis, whereas their progenies yield corresponding differentiated tissue phenotypes. Scale up is probable by incorporating a combination of stem cells and their progenies in repeating modules of internal microchannels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78100/1/ten.tea.2008.0653.pd

    Engineered Osteochondral Grafts Using Biphasic Composite Solid Free-Form Fabricated Scaffolds

    Full text link
    Tissue engineering has provided an alternative to traditional strategies to repair cartilage damaged by injury or degenerative disease. A successful strategy to engineer osteochondral tissue will mimic the natural contour of the articulating surface, achieve native mechanical properties and functional load-bearing ability, and lead to integration with host cartilage and underlying subchondral bone. Image-based design (IBD) and solid free-form (SFF) fabrication can be used to generate scaffolds that are load bearing and match articular geometry. The objective of this study was to utilize materials and biological factors in an integrated approach to regenerate a multitissue interface. Biphasic composite scaffolds manufactured by IBD and SFF fabrication were used to simultaneously generate bone and cartilage in discrete regions and provide for the development of a stable interface between cartilage and subchondral bone. Poly-L-lactic acid/hydroxyapatite composite scaffolds were differentially seeded with fibroblasts transduced with an adenovirus expressing bone morphogenetic protein 7 (BMP-7) in the ceramic phase and fully differentiated chondrocytes in the polymeric phase. After subcutaneous implantation into mice, the biphasic scaffolds promoted the simultaneous growth of bone, cartilage, and a mineralized interface tissue. Within the ceramic phase, the pockets of tissue generated included blood vessels, marrow stroma, and adipose tissue. This combination of IBD and SFF-fabricated biphasic scaffolds with gene and cell therapy is a promising approach to regenerate osteochondral defects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63145/1/ten.2004.10.1376.pd

    Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering

    Full text link
    Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for 4 weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77954/1/32833_ftp.pd

    Characterizing Morphology and Nonlinear Elastic Properties of Normal and Thermally Stressed Engineered Oral Mucosal Tissues Using Scanning Acoustic Microscopy

    Full text link
    This study examines the use of high-resolution ultrasound to monitor changes in the morphology and nonlinear elastic properties of engineered oral mucosal tissues under normal and thermally stressed culture conditions. Nonlinear elastic properties were determined by first developing strain maps from acoustic ultrasound, followed by fitting of nonlinear stress?strain data to a 1-term Ogden model. Testing examined a clinically developed ex vivo produced oral mucosa equivalent (EVPOME). As seeded cells proliferate on an EVPOME surface, they produce a keratinized protective upper layer that fills in and smoothens out surface irregularities. These transformations can also alter the nonlinear stress/strain parameters as EVPOME cells differentiate. This EVPOME behavior is similar to those of natural oral mucosal tissues and in contrast to an unseeded scaffold. If ultrasonic monitoring could be developed, then tissue cultivation could be adjusted in-process to account for biological variations in their development of the stratified cellular layer. In addition to ultrasonic testing, an in-house-built compression system capable of accurate measurements on small (?1.0?1.5?cm2) tissue samples is presented. Results showed a near 2.5-fold difference in the stiffness properties between the unstressed EVPOME and the noncell-seeded acellular scaffold (AlloDerm?). There were also 4?greater differences in root mean square values of the thickness in the unseeded AlloDerm compared to the mature unstressed EVPOME; this is a strong indicator for quantifying surface roughness.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140241/1/ten.tec.2012.0467.pd
    • 

    corecore