328 research outputs found
Practical approach to diastolic dysfunction in light of the new guidelines and clinical applications in the operating room and in the intensive care
There is growing evidence both in the perioperative period and in the field of intensive care (ICU) on the association between left ventricular diastolic dysfunction (LVDD) and worse outcomes in patients. The recent American Society of Echocardiography and European Association of Cardiovascular Imaging joint recommendations have tried to simplify the diagnosis and the grading of LVDD. However, both an often unknown pre-morbid LV diastolic function and the presence of several confoundersâi.e., use of vasopressors, positive pressure ventilation, volume loadingâmake the proposed parameters difficult to interpret, especially in the ICU. Among the proposed parameters for diagnosis and grading of LVDD, the two tissue Doppler imaging-derived variables eâČ and E/eâČ seem most reliable. However, these are not devoid of limitations. In the present review, we aim at rationalizing the applicability of the recent recommendations to the perioperative and ICU areas, discussing the clinical meaning and echocardiographic findings of different grades of LVDD, describing the impact of LVDD on patientsâ outcomes and providing some hints on the management of patients with LVDD
The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence
Purpose: Interleukin (IL)-8 is a proinflammatory C-X-C chemokine involved in inflammation underling cardiac diseases, primary or in comorbid condition, such diabetic cardiomyopathy (DCM). The phosphodiesterase type 5 inhibitor sildenafil can ameliorate cardiac conditions by counteracting inflammation. The study aim is to evaluate the effect of sildenafil on serum IL-8 in DCM subjects vs. placebo, and on IL-8 release in human endothelial cells (Hfaec) and peripheral blood mononuclear cells (PBMC) under inflammatory stimuli. Methods: IL-8 was quantified: in sera of (30) DCM subjects before (baseline) and after sildenafil (100 mg/day, 3-months) vs. (16) placebo and (15) healthy subjects, by multiplatform array; in supernatants from inflammation-challenged cells after sildenafil (1 ”M), by ELISA. Results: Baseline IL-8 was higher in DCM vs. healthy subjects (149.14 ± 46.89 vs. 16.17 ± 5.38 pg/ml, p < 0.01). Sildenafil, not placebo, significantly reduced serum IL-8 (23.7 ± 5.9 pg/ml, p < 0.05 vs. baseline). Receiver operating characteristic (ROC) curve for IL-8 was 0.945 (95% confidence interval of 0.772 to 1.0, p < 0.01), showing good capacity of discriminating the response in terms of drug-induced IL-8 decrease (sensitivity of 0.93, specificity of 0.90). Sildenafil significantly decreased IL-8 protein release by inflammation-induced Hfaec and PBMC and downregulated IL-8 mRNA in PBMC, without affecting cell number or PDE5 expression. Conclusion: Sildenafil might be suggested as potential novel pharmacological tool to control DCM progression through IL-8 targeting at systemic and cellular level
Ivabradine in septic shock: a narrative review
In patients with septic shock, compensatory tachycardia initially serves to maintain adequate cardiac output and tissue oxygenation but may persist despite appropriate fluid and vasopressor resuscitation. This sustained elevation in heart rate and altered heart rate variability, indicative of autonomic dysfunction, is a well-established independent predictor of adverse outcomes in critical illness. Elevated heart rate exacerbates myocardial oxygen demand, reduces ventricular filling time, compromises coronary perfusion during diastole, and impairs the isovolumetric relaxation phase of the cardiac cycle, contributing to ventricular-arterial decoupling. This also leads to increased ventricular and atrial filling pressures, with a heightened risk of arrhythmias. Ivabradine, a highly selective inhibitor of the sinoatrial node's pacemaker current (If or "funny" current), mitigates heart rate by modulating diastolic depolarization slope without affecting contractility. By exerting a selective chronotropic effect devoid of negative inotropic properties, ivabradine shows potential for improving hemodynamics in septic shock patients with cardiac dysfunction. This review evaluates the plausible mechanisms and existing evidence regarding the utility of ivabradine in managing patients with septic shock
The âCHEOPSâ bundle for the management of Left Ventricular Diastolic Dysfunction in critically ill patients: an expertsâ opinion
The impact of left ventricular (LV) diastolic dysfunction (DD) on the outcome of patients with heart failure was established over three decades ago. Nevertheless, the relevance of LVDD for critically ill patients admitted to the intensive care unit has seen growing interest recently, and LVDD is associated with poor prognosis. Whilst an assessment of LV diastolic function is desirable in critically ill patients, treatment options for LVDD are very limited, and pharmacological possibilities to rapidly optimize diastolic function have not been found yet. Hence, a proactive approach might have a substantial role in improving the outcomes of these patients. Recalling historical Egyptian parallelism suggesting that Doppler echocardiography has been the âRosetta stoneâ to decipher the study of LV diastolic function, we developed a potentially useful acronym for physicians at the bedside to optimize the management of critically ill patients with LVDD with the application of the bundle. We summarized the bundle under the acronym of the famous ancient Egyptian pharaoh CHEOPS: Chest Ultrasound, combining information from echocardiography and lung ultrasound; HEmodynamics assessment, with careful evaluation of heart rate and rhythm, as well as afterload and vasoactive drugs; OPtimization of mechanical ventilation and pulmonary circulation, considering the effects of positive end-expiratory pressure on both right and left heart function; Stabilization, with cautious fluid administration and prompt fluid removal whenever judged safe and valuable. Notably, the CHEOPS bundle represents expertsâ opinion and are not targeted at the initial resuscitation phase but rather for the optimization and subsequent period of critical illness
Ratio of carbon dioxide veno-arterial difference to oxygen arterial-venous difference is not associated with lactate decrease after fluid bolus in critically ill patients with hyperlactatemia: results from a prospective observational study
Background: High ratio of the carbon dioxide veno-arterial difference to the oxygen arterial-venous difference (PvaCO2/CavO2) is associated with fluid bolus (FB) induced increase in oxygen consumption (VO2). This study investigated whether PvaCO2/CavO2 was associated with decreases in blood-lactate levels FB in critically ill patients with hyperlactatemia. Methods: This prospective observational study examined adult patients in the intensive care unit (ICU) with lactate levels > 1.5 mmol/L who received FBs. Blood-lactate levels were measured before and after FB under unchanged metabolic, respiratory, and hemodynamic conditions. The primary outcome was blood-lactate levels after FB. Significant decreases in blood-lactate levels were considered as blood-lactate levels < 1.5 mmol/L or a decrease of more than 10% compared to baseline. Results: The study enrolled 40 critically ill patients, and their median concentration of blood lactate was 2.6 [IQR:1.9 â 3.8] mmol/L. There were 27 (68%) patients with PvaCO2/CavO2 â„ 1.4 mmHg/ml, and 10 of them had an increase in oxygen consumption (dVO2) â„ 15% after FB, while 13 (32%) patients had PvaCO2/CavO2 < 1.4 mmHg/ml before FB, and none of them had dVO2 â„ 15% after FB. FB increased the cardiac index in patients with high and low preinfusion PvaCO2/CavO2 (13.4% [IQR: 8.3 â 20.2] vs. 8.8% [IQR: 2.9 â 17.4], p = 0.34). Baseline PvaCO2/CavO2 was not found to be associated with a decrease in blood lactate after FB (OR: 0.88 [95% CI: 0.39 â 1.98], p = 0.76). A positive correlation was observed between changes in blood lactate and baseline PvaCO2/CavO2 (r = 0.35, p = 0.02). Conclusions: In critically ill patients with hyperlactatemia, PvaCO2/CavO2 before FB cannot be used to predict decreases in blood-lactate levels after FB. Increased PvaCO2/CavO2 is associated with less decrease in blood-lactate levels
Effects of reversal of hypotension on cerebral microcirculation and metabolism in experimental sepsis
The effects of reversal of hypotension on the cerebral microcirculation, oxygenation, and metabolism in septic shock remain unclear. In 12 sheep, peritonitis was induced by injection of feces into the abdominal cavity. At the onset of septic shock (mean arterial pressure (MAP) < 65 mmHg, unresponsive to fluid challenge), a norepinephrine infusion was titrated in eight sheep to restore a MAP â„ 75 mmHg; the other four sheep were kept hypotensive. The microcirculation of the cerebral cortex was evaluated using side-stream dark-field video-microscopy. Brain partial pressure of oxygen (PbtO2) was measured, and cerebral metabolism was assessed using microdialysis. All animals developed septic shock after a median of 15 (14â19) h. When MAP was raised using norepinephrine, the PbtO2 increased significantly (from 41 ± 4 to 55 ± 5 mmHg), and the cerebral lactate/pyruvate ratio decreased (from 47 ± 13 to 28 ± 4) compared with values at shock onset. Changes in the microcirculation were unchanged with restoration of MAP and the glutamate increased further (from 17 ± 11 to 23 ± 16 ÎŒM), as it did in the untreated animals. In septic shock, the correction of hypotension with vasopressors may improve cerebral oxygenation but does not reverse the alterations in brain microcirculation or cerebral metabolism
- âŠ