258 research outputs found

    LibCPIXE: a PIXE simulation open-source library for multilayered samples

    Full text link
    Most particle induced X-ray emission (PIXE) data analysis codes are not focused on handling multilayered samples. We have developed an open-source library called "LibCPIXE", for PIXE data analysis. It is written in standard C and implements functions for simulating X-ray yields of PIXE spectra taken from arbitrary samples, including multilayered targets. The library is designed to be fast, portable, modular and scalable, as well as to facilitate its incorporation into any existing program. In order to demonstrate the capabilities of the library, a program called CPIXE was developed and used to analyze various real samples involving both bulk and layered samples. Just as the library, the CPIXE source code is freely available under the General Public License. We demonstrate that it runs both under GNU/Linux systems as well as under MS Windows. There is in principle no limitation to port it to other platforms

    Forensics and ship logs solve a 200-year mystery about where the first kiwi specimen was collected

    Get PDF
    The following article is republished from The Conversation, dated 14 April 2021 (https://theconversation.com/forensics-and-ship-logs-solve-a-200-year-mystery-about-where-the-first-kiwi-specimen-was-collected-158410). As required in this journal’s republishing guidelines, the article has not been edited, but we have attributed the authors and their institute

    Comprehensive School Guidance Programs in Nebraska: Implications for Rural Schools

    Get PDF
    Archival data from an in-state survey of 428 elementary and secondary school counselors completed by the Nebraska Department of Education regarding comprehensive guidance programs was reviewed for relevant information. This information is discussed relative to the current views and knowledge regarding the state of comprehensive developmental guidance and their implications for school counselors and administrators

    A bittern (Aves: Ardeidae) from the Early Miocene of New Zealand

    Get PDF
    Author version made available in accordance with Publisher copyright policy

    Early Miocene fossil frogs (Anura: Leiopelmatidae) from New Zealand.

    Get PDF
    Author version made available in accordance with publisher copyright policy.The first pre-Quaternary anurans from New Zealand are reported from the Early Miocene (19–16 Ma) St Bathans Fauna based on 10 fossil bones. Four bones representing two new species differing in size are described in Leiopelma: Leiopelmatidae, and are the first Tertiary records for the family. Six indeterminate frog fossils are morphologically similar to leiopelmatids and represent two species consistent in size with those known from diagnostic material. These records are highly significant, as minimally, they reduce the duration of the leiopelmatid ‘ghost lineage’ by c.20 million years and demonstrate that a diversity of leiopelmatids has long been present on New Zealand, supporting the ancient dichotomy of the extant species based on molecular data

    The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae

    Get PDF
    . Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.Presbyornithids were the dominant birds in Palaeogene lacustrine assemblages, especially in the Northern Hemisphere, but are thought to have disappeared worldwide by the mid-Eocene. Now classified within Anseriformes (screamers, ducks, swans and geese), their relationships have long been obscured by their strange wader-like skeletal morphology. Reassessment of the late Oligocene South Australian material attributed to Wilaru tedfordi, long considered to be of a stone-curlew (Burhinidae, Charadriiformes), reveals that this taxon represents the first record of a presbyornithid in Australia. We also describe the larger Wilaru prideauxi sp. nov. from the early Miocene of South Australia, showing that presbyornithids survived in Australia at least until ca 22 Ma. Unlike on other continents, where presbyornithids were replaced by aquatic crown-group anatids (ducks, swans and geese), species of Wilaru lived alongside these waterfowl in Australia. The morphology of the tarsometatarsus of these species indicates that, contrary to other presbyornithids, they were predominantly terrestrial birds, which probably contributed to their long-term survival in Australia. The morphological similarity between species of Wilaru and the Eocene South American presbyornithid Telmabates antiquus supports our hypothesis of a Gondwanan radiation during the evolutionary history of the Presbyornithidae. Teviornis gobiensis from the Late Cretaceous of Mongolia is here also reassessed and confirmed as a presbyornithid. These findings underscore the temporal continuance of Australia’s vertebrates and provide a new context in which the phylogeny and evolutionary history of presbyornithids can be examined

    Using super-high resolution satellite imagery to census threatened albatrosses

    Get PDF
    This study is the first to utilize 30-cm resolution imagery from the WorldView-3 (WV-3) satellite to count wildlife directly. We test the accuracy of the satellite method for directly counting individuals at a well-studied colony of Wandering Albatross Diomedea exulans at South Georgia, and then apply it to the closely related Northern Royal Albatross Diomedea sanfordi, which is near-endemic to the Chatham Islands and of unknown recent population status due to the remoteness and limited accessibility of the colonies. At South Georgia, satellite-based counts were comparable to ground-based counts of Wandering Albatross nests, with a slight over-estimation due to the presence of non-breeding birds. In the Chatham Islands, satellite-based counts of Northern Royal Albatross in the 2015/2016 season were similar to ground-based counts undertaken on the Forty-Fours islands in 2009/2010, but much lower than ground-based counts undertaken on The Sisters islands in 2009/2010, which is of major conservation concern for this endangered albatross species. We conclude that the ground-breaking resolution of the newly available WV-3 satellite will provide a step change in our ability to count albatrosses and other large birds directly from space without disturbance, at potentially lower cost and with minimal logistical effort

    Miocene fossils show that kiwi (Apteryx, Apterygidae) are probably not phyletic dwarves

    Get PDF
    Copyright 2013 © Verlag Naturhistorisches Museum. Published version of the paper reproduced here with permission from the publisher. Publisher website: http://www.nhm-wien.ac.at/Until now, kiwi (Apteryx, Apterygidae) have had no pre-Quaternary fossil record to inform on the timing of their arrival in New Zealand or on their inter-ratite relationships. Here we describe two fossils in a new genus of apterygid from Early Miocene sediments at St Bathans, Central Otago, minimally dated to 19–16 Ma. The new fossils indicate a markedly smaller and possibly volant bird, supporting a possible overwater dispersal origin to New Zealand of kiwi independent of moa. If the common ancestor of this early Miocene apterygid species and extant kiwi was similarly small and volant, then the phyletic dwarfing hypothesis to explain relatively small body size of kiwi compared with other ratites is incorrect. Apteryx includes five extant species distributed on North, South, Stewart and the nearshore islands of New Zealand. They are nocturnal, flightless and comparatively large birds, 1–3 kg, with morphological attributes that reveal an affinity with ratites, but others, such as their long bill, that differ markedly from all extant members of that clade. Although kiwi were long considered most closely related to sympatric moa (Dinornithiformes), all recent analyses of molecular data support a closer affinity to Australian ratites (Casuariidae). Usually assumed to have a vicariant origin in New Zealand (ca 80–60 Ma), a casuariid sister group relationship for kiwi, wherein the common ancestor was volant, would more easily allow a more recent arrival via overwater dispersal

    On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere

    Get PDF
    © 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 24 month embargo from date of publication (Feb 2018) in accordance with the publisher’s archiving policyPolarornis and Vegavis from the Upper Cretaceous of Antarctica are among the few Mesozoic birds from the Southern Hemisphere. In the original descriptions, they were assigned to two widely disparate avian clades, that is, Gaviiformes and crown group Anseriformes, respectively. In a recent publication, however, specimens referred to both taxa were classified into a new higher-level taxon, Vegaviidae, to which various other late Mesozoic and early Cenozoic avian taxa were also assigned. Here, we detail that classification into Vegaviidae is poorly supported for most of these latter fossils, which is particularly true for Australornis lovei and an unnamed phaethontiform fossil from the Waipara Greensand in New Zealand. Plesiomorphic traits of the pterygoid and the mandible clearly show that Vegavis is not a representative of crown group Anseriformes, and we furthermore point out that even anseriform or galloanserine affinities of Vegaviidae have not been firmly established

    History Repeats: Large Scale Synchronous Biological Turnover in Avifauna From the Plio-Pleistocene and Late Holocene of New Zealand

    Get PDF
    New Zealand's unique biodiversity is the product of at least 55 million years of geographic isolation, supplemented by persistent transoceanic migration. Palaeontological and genetic evidence suggest most New Zealand avifauna has colonized from Australia. We synthesize evolutionary genetic studies to show a previously unrecognized clustering of divergence times in Australian and New Zealand bird species pairs, across the avian phylogeny at the beginning of the Pleistocene, around 2.5 million years ago. The timing coincides with major climatic and vegetation changes with the initiation of the Plio-Pleistocene glacial cycles. Recent anthropogenic impacts and environmental modifications are replicating in some important ways Pleistocene glacial landscapes, resulting in a new wave of avian “native invaders” into New Zealand
    corecore