3 research outputs found

    Identification of barley varieties by protein profiling

    No full text
    There is an increasing demand in the grain handling chain to control purity and segregation of different classes and varieties of grains. Accurate segregation is needed to ensure that varieties with specific qualities are delivered at high purity and, for example, in the future to segregate GM and non-GM material. Since the grain handling chain stretches from farmers, to transporters, to storage silos, to end-users in the world market, low-cost rapid tests are needed. In addition, with the advent of end-point royalties, rapid variety identification is needed to monitor compliance in delivering new varieties subject to plant breeders’ rights (PBR)

    A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery

    Get PDF
    Cell penetrating peptides (CPPs) offer great potential to deliver therapeutic molecules to previously inaccessible intracellular targets. However, many CPPs are inefficient and often leave their attached cargo stranded in the cell’s endosome. We report a versatile platform for the isolation of peptides delivering a wide range of cargos into the cytoplasm of cells. We used this screening platform to identify multiple “Phylomer” CPPs, derived from bacterial and viral genomes. These peptides are amenable to conventional sequence optimization and engineering approaches for cell targeting and half-life extension. We demonstrate potent, functional delivery of protein, peptide, and nucleic acid analog cargos into cells using Phylomer CPPs. We validate in vivo activity in the cytoplasm, through successful transport of an oligonucleotide therapeutic fused to a Phylomer CPP in a disease model for Duchenne’s muscular dystrophy. This report thus establishes a discovery platform for identifying novel, functional CPPs to expand the delivery landscape of druggable intracellular targets for biological therapeutics

    The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula

    No full text
    We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome
    corecore