9 research outputs found

    Light harvesting with multiwall carbon nanotube/silicon heterojunctions

    No full text
    We report on a significant photocurrent generation from a planar device obtained by coating a bare n doped silicon substrate with a random network of multiwall carbon nanotubes (MWCNTs). This MWCNT/n-Si hybrid device exhibits an incident photon to current efficiency reaching up to 34% at 670 nm. We also show that MWCNTs covering a quartz substrate still exhibit photocurrent, though well below than that of the MWCNTs coating the silicon substrate. These results suggest that MWCNTs are able to generate photocurrent and that the silicon substrate plays a fundamental role in our planar device. The former effect is particularly interesting because MWCNTs are generally known to mimic the electronic properties of graphite, which does not present any photocurrent generation. On the basis of theoretical calculations revealing a weak metallic character for MWCNTs, we suggest that both metallic and semiconducting nanotubes are able to generate e–h pairs upon illumination. This can be ascribed to the presence of van Hove singularities in the density of states of each single wall carbon nanotube constituting the MWCNT and to the low density of electrons at the Fermi level. Finally, we suggest that though both MWCNTs and Si substrate are involved in the photocurrent generation process, MWCNT film mainly acts as a semitransparent electrode in our silicon-based device

    Photocurrent generation in random networks of multiwall-carbon-nanotubes grown by an "all-laser" process

    No full text
    We report photocurrent generation in entangled networks of multiwall-carbon nanotubes (MWCNTs) grown on TiN/Si substrates by an all-laser process. By integrating these MWCNTs into planar devices, we demonstrate that they generate photocurrent over all the visible and near-ultraviolet range, with maximum efficiency around 420 nm. Photocurrent is obtained even at zero applied voltage, pointing to a true photovoltaic (PV) effect. The extracted photocurrent as a function of applied voltage exhibits nonlinear behavior for voltages >= 2 V, suggesting that the devices do not behave as pure photoresistances. Other mechanisms (e.g., Schottky barriers imbalance) are invoked to describe current flow in these PV devices
    corecore