10 research outputs found

    Long-term prediction by DNA methylation of high-grade cervical intraepithelial neoplasia: Results of the ARTISTIC cohort.

    Get PDF
    Methylation markers have shown potential for triaging high-risk HPV-positive (hrHPV+) women to identify those at increased risk of invasive cervical cancer (ICC). Our aim was to assess the performance of the S5 DNA methylation classifier for predicting incident high-grade cervical intraepithelial neoplasia (CIN) and ICC among hrHPV+ women in the ARTISTIC screening trial cohort. The S5 classifier, comprising target regions of tumour suppressor gene EPB41L3 and L1 and L2 regions of HPV16, HPV18, HPV31, and HPV33, was assayed by pyrosequencing in archived hrHPV+ liquid-based samples from 343 women with high-grade disease (139 CIN2, 186 CIN3, and 18 ICC) compared to 800 hrHPV+ controls. S5 DNA methylation correlated directly with increasing severity of disease and inversely with lead time to diagnosis. S5 could discriminate between hrHPV+ women who developed CIN3 or ICC and hrHPV+ controls (p <.0001) using samples taken on average 5 years before diagnosis. This relationship was independent of cytology at baseline. The S5 test showed much higher sensitivity than HPV16/18 genotyping for identifying prevalent CIN3 (93% vs. 61%, p = .01) but lower specificity (50% vs. 66%, p <.0001). The S5 classifier identified most women at high risk of developing precancer and missed very few prevalent advanced lesions thus appearing to be an objective test for triage of hrHPV+ women. The combination of methylation of host and HPV genes enables S5 to combine the predictive power of methylation with HPV genotyping to identify hrHPV-positive women who are at highest risk of developing CIN3 and ICC in the future

    Clinical performance of methylation as a biomarker for cervical carcinoma in situ and cancer diagnosis: A worldwide study.

    Get PDF
    The shift towards primary human papillomavirus (HPV)-based screening has necessitated the search for a secondary triage test that provides sufficient sensitivity to detect high-grade cervical intraepithelial neoplasia (CIN) and cancer, but also brings an improved specificity to avoid unnecessary clinical work and colposcopy referrals. We evaluated the performance of the previously described DNA-methylation test (S5) in detecting CIN3 and cancers from diverse geographic settings in high-, medium- and low-income countries, using the cut-off of 0.80 and exploratory cut-offs of 2.62 and 3.70. Assays were performed using exfoliated cervical specimens (n = 808) and formalin-fixed biopsies (n = 166) from women diagnosed with cytology-negative results (n = 220), CIN3 (n = 204) and cancer stages I (n = 245), II (n = 249), III (n = 28) and IV (n = 22). Methylation increased proportionally with disease severity (Cuzick test for trend, P < .0001). S5 accurately separated women with negative-histology from CIN3 or cancer (P < .0001). At the 0.80 cut-off, 543/544 cancers were correctly identified as S5 positive (99.81%). At cut-off 3.70, S5 showed a sensitivity of 95.77% with improved specificity. The S5 odds ratios of women negative for cervical disease vs CIN3+ were significantly higher than for HPV16/18 genotyping at all cut-offs (all P < .0001). At S5 cut-off 0.80, 96.15% of consistently high-risk human papillomavirus (hrHPV)-negative cancers (tested with multiple hrHPV-genotyping assay) were positive by S5. These cancers may have been missed in current primary hrHPV-screening programmes. The S5 test can accurately detect CIN3 and malignancy irrespective of geographic context and setting. The test can be used as a screening and triage tool. Adjustment of the S5 cut-off can be performed considering the relative importance given to sensitivity vs specificity

    HPV16 L1 and L2 DNA methylation predicts high-grade cervical intraepithelial neoplasia in women with mildly abnormal cervical cytology

    Get PDF
    Cancer Research UK, Queen Mary University of London. Grant Number: project grant C8162/A4609 and programme grants C8162/A10406, C569/A10404 and C236/A1179

    DNA methylation testing with S5 for triage of high-risk HPV positive women

    Get PDF
    Methylation of host and viral genes is promising for triage of women with high‐risk human papillomavirus infections (hrHPV). Using a population‐based sample of hrHPV positive women with cervical biopsies within 12 months after cervical screening, the clinical value of the S5 methylation classifier (S5), HPV genotyping and cytology were compared as potential triage tests, for outcomes of cervical intraepithelial neoplasia (CIN) grade 3 or greater (CIN3+), CIN2+ and CIN2, and the area under the curve (AUC) calculated. S5 scores increased with histopathology severity (P (trend) < .001). For CIN3+, the AUC was 0.780 suggesting S5 provides good discrimination between <CIN3 and CIN3+. AUCs were significant for all pairwise comparisons of <CIN2, CIN2 and CIN3+ (P < .001). The positive predictive value (PPV) of HPV16/18 genotyping for women with any abnormal cytology was greater than S5 (25.36% vs 20.87%, P = .005) for CIN3+, while sensitivity was substantially greater for S5 (83.33% vs 59.28%, P < .001). Restricting to women with abnormal cytology, but excluding those with high‐grade cytology, both S5 and HPV16/18 provided CIN3+ PPVs high enough to recommend colposcopy. Triage with S5 also appeared useful for hrHPV positive women negative for HPV16/18 (CIN3+ PPV: 7.33%, sensitivity: 57.52%). S5 provided increased sensitivity for CIN3+ compared to HPV16/18 genotyping for hrHPV positive women, overall and when restricted to women with abnormal cytology, suggesting S5 may improve colposcopy referral. S5 also has the ability to distinguish between <CIN2, CIN2 and CIN3+, a finding of importance for managing CIN2, given the complexity and uncertainty associated with this diagnosis

    Low methylation marker levels among human papillomavirus-vaccinated women with cervical high-grade squamous intraepithelial lesions.

    Get PDF
    Cervical cancer screening programs, including triage tests, need redesigning as human papillomavirus (HPV)-vaccinated women are entering the programs. Methylation markers offer a potential solution to reduce false-positive rates by identifying clinically relevant cervical lesions with progressive potential. In a nested case-control study, 9242 women who received the three-dose HPV16/18-vaccine at ages 12-15 or 18 in a community-randomized trial were included. Subsequently, they were re-randomized for either frequent or infrequent cervical cancer screening trials. Over a 15-year post-vaccination follow-up until 2022, 17 high-grade squamous intraepithelial lesion (HSIL) and 15 low-grade (LSIL) cases were identified at the 25-year screening round, alongside 371 age and community-matched HPV16/18-vaccinated controls. Methylation analyses were performed on cervical samples collected at age 25, preceding histologically confirmed LSIL or HSIL diagnoses. DNA methylation of viral (HPV16/18/31/33) and host-cell genes (EPB41L3, FAM19A4, and miR124-2) was measured, along with HPV-genotyping. No HPV16/18 HSIL cases were observed. The predominant HPV-genotypes were HPV52 (29.4%), HPV59/HPV51/HPV58 (each 23.5%), and HPV33 (17.7%). Methylation levels were generally low, with no significant differences in mean methylation levels of viral or host-cell genes between the LSIL/HSIL and controls. However, a significant difference in methylation levels was found between HSIL cases and controls when considering a combination of viral genes and EPB41L3 (p value = .0001). HPV-vaccinated women with HSIL had HPV infections with uncommon HPV types that very rarely cause cancer and displayed low methylation levels. Further investigation is warranted to understand the likely regressive nature of HSIL among HPV-vaccinated women and its implications for management

    Validation of a DNA methylation HPV triage classifier in a screening sample

    No full text
    High‐risk human papillomavirus (hrHPV) DNA tests have excellent sensitivity for detection of cervical intraepithelial neoplasia 2 or higher (CIN2+). A drawback of hrHPV screening, however, is modest specificity. Therefore, hrHPV‐positive women might need triage to reduce adverse events and costs associated with unnecessary colposcopy. We compared the performance of HPV16/18 genotyping with a predefined DNA methylation triage test (S5) based on target regions of the human gene EPB41L3, and viral late gene regions of HPV16, HPV18, HPV31 and HPV33. Assays were run using exfoliated cervical specimens from 710 women attending routine screening, of whom 38 were diagnosed with CIN2+ within a year after triage to colposcopy based on cytology and 341 were hrHPV positive. Sensitivity and specificity of the investigated triage methods were compared by McNemar's test. At the predefined cutoff, S5 showed better sensitivity than HPV16/18 genotyping (74% vs 54%, P = 0.04) in identifying CIN2+ in hrHPV‐positive women, and similar specificity (65% vs 71%, P = 0.07). When the S5 cutoff was altered to allow equal sensitivity to that of genotyping, a significantly higher specificity of 91% was reached (P < 0.0001). Thus, a DNA methylation test for the triage of hrHPV‐positive women on original screening specimens might be a valid approach with better performance than genotyping
    corecore