10 research outputs found

    Editor's Summary

    No full text
    Manipulation of consciousness is an everyday medical trick−−think anesthesia−−but physicians have only the crudest of tools to detect when a person is not aware. The usual question or physical stimulus does not always provide reliable reactions, and a more precise index is needed to avoid, for example, the conclusion that people who have locked-in syndrome (in which they are aware but cannot respond) are unconscious. Here, Casali et al. have extended their previous work on electrical correlates of consciousness to define an electroencephalographic-derived index of human consciousness [the perturbational complexity index (PCI)] that reflects the information content of the brain's response to a magnetic stimulus. The PCI could allow tracking of consciousness in individual patients. The authors used data already collected from previous experiments, in which they had stimulated people's brains with transcranial magnetic stimulation. By calculating the likely brain regional sources of the signals and then comparing the unique information in each, the authors derived PCI values. The values ranged from 0.44 to 0.67 in 32 awake healthy people, but fell to 0.18 to 0.28 during nonrapid eye movement (NREM) sleep. Then, to see whether a completely different way of inducing unconsciousness had the same effect on PCI, the authors assessed data from patients given various amounts of the anesthetics midazolam, xenon, and propofol. These agents too caused low ''unconscious' ' values for the PCI: midazolam deep sedation, 0.23 to 0.31; propofol, 0.13 to 0.30; and xenon, 0.12 to 0.31
    corecore