32 research outputs found

    Mechanistic Insights into a Novel Exporter-Importer System of Mycobacterium tuberculosis Unravel Its Role in Trafficking of Iron

    Get PDF
    Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-à-vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive.Here, we demonstrate an interplay among three iron regulated Mycobacterium tuberculosis (M.tb) proteins, namely, Rv1348 (IrtA), Rv1349 (IrtB) and Rv2895c in export and import of M.tb siderophores across the membrane and the consequent iron uptake. IrtA, interestingly, has a fused N-terminal substrate binding domain (SBD), representing an atypical subset of ABC transporters, unlike IrtB that harbors only the permease and ATPase domain. SBD selectively binds to non-ferrated siderophores whereas Rv2895c exhibits relatively higher affinity towards ferrated siderophores. An interaction between the permease domain of IrtB and Rv2895c is evident from GST pull-down assay. In vitro liposome reconstitution experiments further demonstrate that IrtA is indeed a siderophore exporter and the two-component IrtB-Rv2895c system is an importer of ferrated siderophores. Knockout of msmeg_6554, the irtA homologue in Mycobacterium smegmatis, resulted in an impaired M.tb siderophore export that is restored upon complementation with M.tb irtA.Our data suggest the interplay of three proteins, namely IrtA, IrtB and Rv2895c in synergizing the balance of siderophores and thus iron inside the mycobacterial cell

    Oxalic acid, versatile peroxidase secretion and chelating ability of Bjerkandera fumosa in rich and limited culture conditions

    Get PDF
    Efficient ligninolytic systems of wood-degrading fungi include not only oxidizing enzymes, but also low-molecular-weight effectors. The ability of Bjerkandera fumosa to secrete oxalic acid and versatile peroxidase (VP) in nitrogen-rich and nitrogen-limited media was studied. Higher activity of VP was determined in the nitrogen-limited media but greater concentration of oxalic acid was observed in the cultures of B. fumosa without nitrogen limitation. Ferric ions chelating ability of Bjerkandera fumosa studied in ferric ions limited media was correlated with the increased level of oxalic acid. The presence of hydroxamate-type siderophores in B. fumosa media were also detected. Oxalate decarboxylase was found to be responsible for regulation of oxalic acid concentration in the tested B. fumosa cultures
    corecore