278 research outputs found
X-ray absorption spectroscopy on layered cobaltates Na_xCoO_2
Measurements of polarization and temperature dependent soft x-ray absorption
have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They
show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which
is temperature independent in a temperature range between 25 K and 372 K. This
deviation was found to be different for Co^{3+} and Co^{4+} sites. With the
help of a cluster calculation we are able to interpret the Co L_{23}-edge
absorption spectrum and find a doping dependent energy splitting between the
t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.Comment: 7 pages, 8 figure
Hierarchical ZSM‐5 catalysts: The effect of different intracrystalline pore dimensions on catalyst deactivation behaviour in the MTO reaction
We present the effect of different combinations of intracrystalline pore systems in hierarchical ZSM‐5 zeolites on their performance as MTO catalysts. We prepared ZSM‐5 zeolites with additional intracrystalline mesoporous, intracrystalline macropores and a novel ZSM‐5 type zeolite with intracrystalline meso and macropores. The catalytic results showed that both used catalysts with mesopores and macropores exhibited three times longer catalyst lifetime compared to a conventional catalyst. However, TGA analysis of the deactivated catalysts showed much larger coke content in the mesoporous catalyst than in the macroporous catalyst. Consequently, macropores predominantly led to reduced coke formation rate while additional mesopores predominantly enhanced the resistance against deactivation by coke. Combining both intracrystalline meso and macropores in one catalyst lead to a tenfold increase in catalyst lifetime. Besides the effect on the catalyst lifetime there was also a strong effect of the additional pore systems on the selectivity of the catalysts. The catalysts containing mesopores showed reduced selectivity to short chain olefins and increased selectivity to larger hydrocarbons in comparison to the catalysts without a mesopores system
A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay
A large Hilbert space is used for the calculation of the nuclear matrix
elements governing the light neutrino mass mediated mode of neutrinoless double
beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron
quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA
with proton-neutron pairing (full-RQRPA) methods. We have found that the
nuclear matrix elements obtained with the standard pn-QRPA for several nuclear
transitions are extremely sensitive to the renormalization of the
particle-particle component of the residual interaction of the nuclear
hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary
accuracy to allow us to extract a reliable limit on the effective neutrino
mass. This behaviour, already known from the calculation of the two-neutrino
double beta decay matrix elements, manifests itself in the neutrinoless
double-beta decay but only if a large model space is used. The full-RQRPA,
which takes into account proton-neutron pairing and considers the Pauli
principle in an approximate way, offers a stable solution in the physically
acceptable region of the particle-particle strength. In this way more accurate
values on the effective neutrino mass have been deduced from the experimental
lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur
Cross effect of Coulomb correlation and hybridization in the occurrence of ferromagnetism in two shifted band transition metals
In this work we discuss the occurrence of ferromagnetism in transition-like
metals. The metal is represented by two hybridized() and shifted
) bands one of which includes Hubbard correlation whereas the
other is uncorrelated. The starting point is to transform the original
Hamiltonian into an effective one. Only one site retains the full correlation
(U) while in the others the correlations are represented by an effective field,
the self-energy(single-site approximation). This field is self-consistently
determined by imposing the translational invariance of the problem. Thereby one
gets an exchange split quasi-particle density of states and then an
electron-spin polarization for some values of the parameters , being the ratio of the effective masses of the two bands
and of the occupation number .Comment: 4 pages, 10 figure
Ferromagnetism in the Periodic Anderson Model - a Modified Alloy Analogy
We introduce a new aproximation scheme for the periodic Anderson model (PAM).
The modified alloy approximation represents an optimum alloy approximation for
the strong coupling limit, which can be solved within the CPA-formalism.
Zero-temperature and finite-temperature phase diagrams are presented for the
PAM in the intermediate-valence regime. The diversity of magnetic properties
accessible by variation of the system parameters can be studied by means of
quasiparticle densities of states: The conduction band couples either ferro- or
antiferromagneticaly to the f-levels. A finite hybridization is a necessary
precondition for ferromagnetism. However, too strong hybridization generally
suppresses ferromagnetism, but can for certain system parameters also lead to a
semi-metallic state with unusual magnetic properties. By comparing with the
spectral density approximation, the influence of quasiparticle damping can be
examined.Comment: 20 pages, 13 figure
Femoral neck fracture following intramedullary nailing with misplacement of an end cup: report of two cases
Femoral neck fracture is an unusual complication of intramedullary fixation of a broken femur. We report on two cases of femoral neck fractures attributed to misplacement of an end cup and subsequent invasive maneuvers in an effort to remove it. Iatrogenic fractures of the femoral neck during or after intramedullary nailing are reported in the medical literature. Authors associate it with many possible technical mistakes performed during the procedure, yet no complications after missed end cup placement were noted. We suggest that the fractures described below were a consequence of injury to the vascular supply and bone stock of the initially intact femoral neck
Stabilization of d-Band Ferromagnetism by Hybridization with Uncorrelated Bands
We investigate the influence of s-d or p-d hybridization to d-band
ferromagnetism to estimate the importance of hybridization for the magnetic
properties of transition metals. To focus our attention to the interplay
between hybridization and correlation we investigate a simple model system
consisting of two non-degenerated hybridized bands, one strongly correlated,
the other one quasi-free. To solve this extended Hubbard model, we apply simple
approximations, namely SDA and MAA, that, concerning ferromagnetism in the
single-band model, are known to give qualitatively satisfactory results. This
approach allows us to discuss the underlying mechanism, by which d-band
ferromagnetism is influenced by the hybridization on the basis of analytical
expressions. The latter clearly display the order and the functional
dependencies of the important effects. It is found, that spin-dependent
inter-band particle fluctuations cause a spin-dependent band shift and a
spin-dependent band broadening of the Hubbard bands. The shift stabilizes, the
broadening tends to destabilize ferromagnetism. Stabilization requires
relatively high band distances and small hybridization matrix elements.
Super-exchange and RKKY coupling are of minor importance.Comment: 9 pages, 7 figures, accepted for PR
- …