273 research outputs found

    Controlled Organocatalytic Ring-Opening Polymerization of Δ-Thionocaprolactone

    Get PDF
    For the first time, the controlled ring-opening polymerization (ROP) of Δ-thionocaprolactone (tnCL) is conducted. The organocatalytic ROP of tnCL occurs without carbonyl scrambling, leading to homopoly(Δ-thionocaprolactone) (PtnCL). The ROP by base catalysts alone is proposed to proceed via a nucleophilic mechanism, while the addition of an H-bond donating thiourea (TU) is shown to provide excellent reaction control. The increased reaction control provided by the TU occurs in the virtual absence of binding between tnCL and TU, and a mechanistic account for this observation is discussed. The monomer ring strain is measured and found to be similar to Ύ-valerolactone (VL). Copolymers with VL are synthesized, and the resulting analysis of the copolymer materials properties provides the only known physical characterizations of poly(thio(no)ester-co-ester)s

    Loosely bound hyperons in the SU(3) Skyrme model

    Full text link
    Hyperon pairs bound in deuteron like states are obtained within the SU(3) Skyrme model in agreement with general expectations from boson exchange models. The central binding from the flavor symmetry breaking terms increases with the strangeness contents of the interacting baryons whereas the kinetic non-linear σ\sigma-model term fixes the spin and isospin of the bound pair. We give a complete account of the interactions of octet baryons within the product approximation to baryon number B=2B=2 configurations.Comment: 35 pages REVTEX including 2 figs, with 3 further figs available on request from [email protected] or from [email protected] SI-94-TP3S2; STPHY-Th/94-

    Semiclassical quantization of SU(3) skyrmions

    Get PDF
    Semiclassical quantization of the SU(3)-skyrmions is performed by means of the collective coordinate method. The quantization condition known for the SU(2)-solitons quantized with SU(3) collective coordinates is generalized for the SU(3) skyrmions with strangeness content different from zero. Quantization of the dipole-type configuration with large strangeness content found recently is considered as an example, the spectrum and the mass splitting of the quantized states are estimated. The energy and baryon number density of SU(3) skyrmions are presented in the form emphasizing their symmetry in different SU(2) subgroups of SU(3), and the lower boundary for the static energy of SU(3) skyrmions is derived.Comment: 16 pages, 2 figures (available upon request). Submitted to JETP on May 6, 1997; in print. A preliminary short version of this paper is hep-th/960916

    Flavor symmetry breaking effects on SU(3) Skyrmion

    Get PDF
    We study the massive SU(3) Skyrmion model to investigate the flavor symmetry breaking (FSB) effects on the static properties of the strange baryons in the framework of the rigid rotator quantization scheme combined with the improved Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB kinetic terms are shown to improve cc the ratio of the strange-light to light-light interaction strengths and cˉ\bar{c} that of the strange-strange to light-light.Comment: 12 pages, latex, no figure

    On the quantization of SU(3)-skyrmions

    Get PDF
    The quantization condition derived previously for SU(2) solitons quantized with SU(3)-collective coordinates is generalized for SU(3) skyrmions with strangeness content different from zero. Quantization of the dipole-type configuration with large strangeness content found recently is considered as an example.Comment: 7 pages, 2 figures (available by request

    BARYON-BARYON INTERACTIONS IN LARGE N_C CHIRAL PERTURBATION THEORY

    Full text link
    Interactions of two baryons are considered in large NCN_C chiral perturbation theory and compared to the interactions derived from the Skyrme model. Special attention is given to a torus-like configuration known to be present in the Skyrme model.Comment: 18 pages, REVTEX, 8 uuencoded PS figures appende

    Mass and width of the dâ€Čd' resonance in nuclei

    Full text link
    We calculated the mass and width of the dâ€Čd' resonance inside nuclei within a nucleon-Δ\Delta model by including the self-energy of the Δ\Delta in the NΔN\Delta propagator. We found that in the nuclear medium the width of the dâ€Čd' is increased by one order of magnitude while its mass changes only by a few MeV. This broadening of the width of the dâ€Čd' resonance embedded in nuclei is consistent with the experimental observations so that the dâ€Čd' can be understood as a NΔN\Delta resonance. Thus, given the freedom between either isospin 0 or isospin 2 for the dâ€Čd', our results give weigth to the isospin-2 assignment.Comment: 14 pages, RevteX type, 2 eps figures. To be published in Phys. Rev. C (September

    Hypernuclei as chiral solitons

    Full text link
    The identification of flavored multiskyrmions with the ground states of known hypernuclei is successful for several of them, e.g. for isodoublet H(Lambda) - He(Lambda), A=4, isoscalars He(Lambda) (A=5) and Li(Lambda) (A=7). In other cases agreement is not so good, but the behaviour of the binding energy with increasing baryon number is in qualitative agreement with data. Charmed or beauty hypernuclei within this approach are predicted to be bound stronger than strange hypernuclei. This conclusion is stable against variation of poorly known heavy flavor decay constants.Comment: 9 pages, 1 Fig. Presented at the International Workshops on Nuclear and Particle Physics at 50-Gev PS, NP01 (KEK, Japan, December 2001) and NP02 (Kyoto, Japan, September 2002). Some additions and corrections of numerical results are mad

    Mass splittings of nuclear isotopes in chiral soliton approach

    Full text link
    The differences of the masses of nuclear isotopes with atomic numbers between \~10 and ~30 can be described within the chiral soliton approach in satisfactory agreement with data. Rescaling of the model is necessary for this purpose - decrease of the Skyrme constant by about 30%, providing the "nuclear variant" of the model. The asymmetric term in Weizsaecker-Bethe- Bacher mass formula for nuclei can be obtained as the isospin dependent quantum correction to the nucleus energy. Some predictions for the binding energies of neutron rich nuclides are made in this way, from, e.g. Be-16 and B-19 to Ne-31 and Na-32. Neutron rich nuclides with high values of isospin are unstable relative to strong interactions. The SK4 (Skyrme) variant of the model, as well as SK6 variant (6-th order term in chiral derivatives in the lagrangian as solitons stabilizer) are considered, and the rational map approximation is used to describe multiskyrmions.Comment: 16 pages, 10 tables, 2 figures. Figures are added and few misprints are removed. Submitted to Phys. Atom. Nucl. (Yad. Fiz.

    Dibaryons with Strangeness: their Weak Nonleptonic Decay using SU(3) Symmetry and how to find them in Relativistic Heavy-Ion Collisions

    Get PDF
    Weak SU(3) symmetry is successfully applied to the weak hadronic decay amplitudes of octet hyperons. Weak nonmesonic and mesonic decays of various dibaryons with strangeness, their dominant decay modes, and lifetimes are calculated. Production estimates for BNL's Relativistic Heavy-Ion Collider are presented employing wave function coalescence. Signals for detecting strange dibaryon states in heavy-ion collisions and revealing information about the unknown hyperon-hyperon interactions are outlined.Comment: 4 pages, 2 figures, uses RevTeX, discussion about the model of the weak decay and experimental signals extended, references update
    • 

    corecore