14 research outputs found

    Interlaboratory validation of a hanging pendulum thrust balance for electric propulsion testing

    No full text
    A hanging pendulum thrust balance has been developed by Imperial College London in collaboration with the European Space Agency (ESA) to characterize a wide range of static fire electric propulsion and chemical micro-propulsion devices with thrust in the range of 1 mN to 1 N. The thrusters under investigation are mounted on a pendulum platform, which is suspended from the support structure using stainless steel flexures. The displacement of the platform is measured using an optical laser triangulation sensor. Thermal stability is ensured by a closed loop self-compensating heating system. The traceability and stability of the calibration are ensured using two separate calibration subsystems: a voice coil actuator and a servomotor pulley system. Two nearly identical thrust balances have been constructed, with one being tested in the Imperial Plasma Propulsion Laboratory and the other in the ESA Propulsion Laboratory. Both balances show a high degree of linearity in the range of 0.5 mN–100 mN. Both instruments have demonstrated a stable calibration over several days, with an estimated standard deviation on thrust measurements better than 0.27 mN for low thrust measurements. The same electric propulsion test article was used during both tests: a Quad Confinement Thruster (QCT) variant called QCT Phoenix. This thruster differed from previous QCT designs by having a newly optimized magnetic topology. The device produced thrust up to 2.21 ± 0.22 mN with a maximum specific impulse of 274 ± 41 s for an anode power range of 50 W–115 W

    MicroRNA Expression Array Identifies Novel Diagnostic Markers for Conventional and Oncocytic Follicular Thyroid Carcinomas

    Full text link
    Objective:The most difficult thyroid tumors to be diagnosed by cytology and histology are conventional follicular carcinomas (cFTCs) and oncocytic follicular carcinomas (oFTCs). Several microRNAs (miRNAs) have been previously found to be consistently deregulated in papillary thyroid carcinomas; however, very limited information is available for cFTC and oFTC. The aim of this study was to explore miRNA deregulation and find candidate miRNA markers for follicular carcinomas that can be used diagnostically.Design:Thirty-eight follicular thyroid carcinomas (21 cFTCs, 17 oFTCs) and 10 normal thyroid tissue samples were studied for expression of 381 miRNAs using human microarray assays. Expression of deregulated miRNAs was confirmed by individual RT-PCR assays in all samples. In addition, 11 follicular adenomas, two hyperplastic nodules (HNs), and 19 fine-needle aspiration samples were studied for expression of novel miRNA markers detected in this study.Results:The unsupervised hierarchical clustering analysis demonstrated individual clusters for cFTC and oFTC, indicating the difference in miRNA expression between these tumor types. Both cFTCs and oFTCs showed an up-regulation of miR-182/-183/-221/-222/-125a-3p and a down-regulation of miR-542-5p/-574-3p/-455/-199a. Novel miRNA (miR-885-5p) was found to be strongly up-regulated (>40-fold) in oFTCs but not in cFTCs, follicular adenomas, and HNs. The classification and regression tree algorithm applied to fine-needle aspiration samples demonstrated that three dysregulated miRNAs (miR-885-5p/-221/-574-3p) allowed distinguishing follicular thyroid carcinomas from benign HNs with high accuracy.Conclusions:In this study we demonstrate that different histopathological types of follicular thyroid carcinomas have distinct miRNA expression profiles. MiR-885-5p is highly up-regulated in oncocytic follicular carcinomas and may serve as a diagnostic marker for these tumors. A small set of deregulated miRNAs allows for an accurate discrimination between follicular carcinomas and hyperplastic nodules and can be used diagnostically in fine-needle aspiration biopsies
    corecore