187 research outputs found
Manage or Being Managed? Towards a Dual Perspective on Boundary Management in Digital Innovation Teams
To achieve better and faster digital innovations, organizations rely on self-managing teams. Boundary management refers to activities that bridge boundaries between different entities. It can foster the effectiveness of self-managing teams, especially in highly digitized working contexts, since virtual collaboration fosters fluid team boundaries. Prior work considers external leaders as responsible for boundary management. However, the increased relevance of self-managing teams also raises the question of how team members can engage in boundary management and how their behaviors relate to leaders’ behaviors. Conducting a qualitative multiple case study with 27 digital innovation workers from three different industries, we identified four categories of boundary management behaviors that self-managing digital innovation teams engage in: fostering psychological safety, exploring through experimentation, building networks, and acting with autonomy. As we demonstrate, these team behaviors complement existing leader behaviors and suggest a dual perspective of boundary management in digital innovation teams
Characterization of the major nuclear localization signal of the Borna disease virus phosphoprotein
Borna disease virus (BDV) replicates and transcribes its negative-sense RNA genome in the nucleus. The BDV phosphoprotein (P) is localized in the nucleus of infected cells and cells transfected with P expression constructs. To identify the nuclear localization signal (NLS) of P, COS- 7 cells were transfected with wild-type or mutant forms of P fused with green fluorescent protein (GFP). Whereas GFP alone was exclusively cytoplasmic, P or P-GFP were nuclear. Analysis of carboxy- and amino- terminal truncation mutants of P indicated that amino acids (aa) 20-37 are sufficient to promote efficient nuclear accumulation of the fusion protein. Residual nuclear import of GFP was observed with portions of P including aa 33-134 or aa 134-201, suggesting the presence of additional NLS motifs. The major NLS of P appears to be bipartite. It consists of two basic aa domains, R22RER25 and R30PRKIPR36, separated by four non-basic aa, S26GSP29
Authentic Borna disease virus transcripts are spliced less efficiently than cDNA-derived viral RNAs
Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. It uses the cellular splicing machinery to generate a set of alternatively spliced mRNAs from the 2.8 and 7.1 kb primary transcripts, each harbouring two introns. To determine whether splicing of these transcripts is regulated by viral factors, the extent of splicing was studied in infected cells and COS-7 cells transiently transfected with plasmids encoding the 2.8 kb RNA of BDV. Unspliced RNA was found to be the most abundant RNA species in infected cells, whereas viral transcripts lacking both introns were only found in minute amounts. In sharp contrast, plasmid-derived 2.8 kb RNA was predominantly intron 1-spliced and double-spliced. Co-expression of the BDV proteins P, N and X did not influence splicing of plasmid-expressed 2.8 kb RNA. Furthermore, the splicing pattern did not change when the 2.8 kb RNA was expressed in BDV-infected cells. Based on these results we speculate that splicing of authentic BDV transcripts is tightly linked to transcription by the viral polymerase
A 40-nm 256-Kb Half-Select Resilient 8T SRAM with Sequential Writing Technique
The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP) of pandemic strains A/Brevig Mission/1/1918 (1918) and A/Hamburg/4/2009 (pH1N1) that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1)/04 (H5N1) resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored
Mutation of the Protein Kinase C Site in Borna Disease Virus Phosphoprotein Abrogates Viral Interference with Neuronal Signaling and Restores Normal Synaptic Activity
Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV) represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS) and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC)–dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P) may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons
Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets.
Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission
BRD9 is a druggable component of interferon-stimulated gene expression and antiviral activity
Interferon (IFN) induction of IFN-stimulated genes (ISGs) creates a formidable protective antiviral state. However, loss of appropriate control mechanisms can result in constitutive pathogenic ISG upregulation. Here, we used genome-scale loss-of-function screening to establish genes critical for IFN-induced transcription, identifying all expected members of the JAK-STAT signaling pathway and a previously unappreciated epigenetic reader, bromodomain-containing protein 9 (BRD9), the defining subunit of non-canonical BAF (ncBAF) chromatin-remodeling complexes. Genetic knockout or small-molecule-mediated degradation of BRD9 limits IFN-induced expression of a subset of ISGs in multiple cell types and prevents IFN from exerting full antiviral activity against several RNA and DNA viruses, including influenza virus, human immunodeficiency virus (HIV1), and herpes simplex virus (HSV1). Mechanistically, BRD9 acts at the level of transcription, and its IFN-triggered proximal association with the ISG transcriptional activator, STAT2, suggests a functional localization at selected ISG promoters. Furthermore, BRD9 relies on its intact acetyl-binding bromodomain and unique ncBAF scaffolding interaction with GLTSCR1/1L to promote IFN action. Given its druggability, BRD9 is an attractive target for dampening ISG expression under certain autoinflammatory conditions
Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection.
Bornaviruses are nonsegmented negative-strand RNA viruses that establish a persistent infection in the nucleus and occasionally integrate a DNA genome copy into the host chromosomal DNA. However, how these viruses achieve intranuclear infection remains unclear. We show that Borna disease virus (BDV), a mammalian bornavirus, closely associates with the cellular chromosome to ensure intranuclear infection. BDV generates viral factories within the nucleus using host chromatin as a scaffold. In addition, the viral ribonucleoprotein (RNP) interacts directly with the host chromosome throughout the cell cycle, using core histones as a docking platform. HMGB1, a host chromatin-remodeling DNA architectural protein, is required to stabilize RNP on chromosomes and for efficient BDV RNA transcription in the nucleus. During metaphase, the association of RNP with mitotic chromosomes allows the viral RNA to segregate into daughter cells and ensure persistent infection. Thus, bornaviruses likely evolved a chromosome-dependent life cycle to achieve stable intranuclear infection
A genome-wide CRISPR/Cas9 screen reveals the requirement of host sphingomyelin synthase 1 for infection with Pseudorabies virus mutant gD–Pass
Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD–Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD–Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD–Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD–Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked
The ubiquitination landscape of the influenza A virus polymerase.
During influenza A virus (IAV) infections, viral proteins are targeted by cellular E3 ligases for modification with ubiquitin. Here, we decipher and functionally explore the ubiquitination landscape of the IAV polymerase proteins during infection of human alveolar epithelial cells by applying mass spectrometry analysis of immuno-purified K-ε-GG (di-glycyl)-remnant-bearing peptides. We have identified 59 modified lysines across the three subunits, PB2, PB1 and PA of the viral polymerase of which 17 distinctively affect mRNA transcription, vRNA replication and the generation of recombinant viruses via non-proteolytic mechanisms. Moreover, further functional and in silico analysis indicate that ubiquitination at K578 in the PB1 thumb domain is mechanistically linked to dynamic structural transitions of the viral polymerase that are required for vRNA replication. Mutations K578A and K578R differentially affect the generation of recombinant viruses by impeding cRNA and vRNA synthesis, NP binding as well as polymerase dimerization. Collectively, our results demonstrate that the ubiquitin-mediated charge neutralization at PB1-K578 disrupts the interaction to an unstructured loop in the PB2 N-terminus that is required to coordinate polymerase dimerization and facilitate vRNA replication. This provides evidence that IAV exploits the cellular ubiquitin system to modulate the activity of the viral polymerase for viral replication
- …