5,233 research outputs found

    Coarse-grained Description of Polymer Blends as Interacting Soft-Colloidal Particles

    Full text link
    We present a theoretical approach which maps polymer blends onto mixtures of soft-colloidal particles. The analytical mesoscale pair distribution functions reproduce well data from united atom molecular dynamics simulations of polyolefin mixtures without fitting parameters. The theory exactly recovers the analytical expressions for density and concentration fluctuation structure factors of soft colloidal mixtures (liquid alloys).Comment: 27 REVTex4 pages, 8 PostScript figures, 1 table accepted for publication in Journal of Chemical Physic

    Cherenkov Telescope Array: The next-generation ground-based gamma-ray observatory

    Full text link
    High energy gamma-ray astronomy is a newly emerging and very successful branch of astronomy and astrophysics. Exciting results have been obtained by the current generation Cherenkov telescope systems such as H.E.S.S., MAGIC, VERITAS and CANGAROO. The H.E.S.S. survey of the galactic plane has revealed a large number of sources and addresses issues such as the question about the origin of cosmic rays. The detection of very high energy emission from extragalactic sources at large distances has provided insights in the star formation during the history of the universe and in the understanding of active galactic nuclei. The development of the very large Cherenkov telescope array system (CTA) with a sensitivity about an order of magnitude better than current instruments and significantly improved sensitivity is under intense discussion. This observatory will reveal an order of magnitude more sources and due to its higher sensitivity and angular resolution it will be able to detect new classes of objects and phenomena that have not been visible until now. A combination of different telescope types will provide the sensitivity needed in different energy ranges.Comment: 4 pages, 3 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Orbits in the H2O molecule

    Get PDF
    We study the forms of the orbits in a symmetric configuration of a realistic model of the H2O molecule with particular emphasis on the periodic orbits. We use an appropriate Poincar\'e surface of section (PSS) and study the distribution of the orbits on this PSS for various energies. We find both ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are still non-escaping orbits around stable periodic orbits. We study in detail the forms of the various periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams.Comment: 21 pages, 14 figures, accepted for publication in CHAO

    The fluorine-NHC gauche effect: a structural and computational study

    Get PDF
    Herein, we report the synthesis and X-ray structural analysis of a collection of fluorinated metal N-heterocyclic carbenes (Ag, Au, Pd, Rh, Ir) and their precursor salts. The common structural feature of these species is a flanking fluoroethyl group which is either freely rotating or embedded within a bicyclic framework. Solid state analysis confirmed a gauche conformational preference in all cases with the fluorine adopting a syn clinal arrangement (ϕ[NCCF] ~ 60°) with respect to the triazolium nitrogen at the vicinal position of the NHC. A density functional theory analysis was employed to quantify these effects and evaluate the influence of electronic modulation of the carbenic carbon [(C=N+); neutral carbene (C:); metal-bound carbene (C=M)], on the relative gauche / anti preference, thus highlighting the potential of this conformational phenomenon as a useful molecular design strategy for controlling the topology of organometallic complexes

    Leberegel – haben sie Bedeutung für Öko-Betriebe? [Livefluke - is it important for organic farms?]

    Get PDF
    Presentation for organic dairy farmers (Demeter)

    Generating Functional for Strong and Nonleptonic Weak Interactions

    Full text link
    The generating functional for Green functions of quark currents is given in closed form to next-to-leading order in the low-energy expansion for chiral SU(3), including one-loop amplitudes with up to three meson propagators. Matrix elements and form factors for strong and nonleptonic weak processes with at most six external states can be extracted from this functional by performing three-dimensional flavour traces. To implement this procedure, a Mathematica program is provided that evaluates amplitudes with at most six external mesons, photons (real or virtual) and virtual W (semileptonic form factors). The program is illustrated with several examples that can be compared with existing calculations.Comment: 26 pages; references added, comparison with other programs added, small changes in the text, version to appear in JHE

    Inter-molecular structure factors of macromolecules in solution: integral equation results

    Full text link
    The inter-molecular structure of semidilute polymer solutions is studied theoretically. The low density limit of a generalized Ornstein-Zernicke integral equation approach to polymeric liquids is considered. Scaling laws for the dilute-to-semidilute crossover of random phase (RPA) like structure are derived for the inter-molecular structure factor on large distances when inter-molecular excluded volume is incorporated at the microscopic level. This leads to a non-linear equation for the excluded volume interaction parameter. For macromolecular size-mass scaling exponents, ν\nu, above a spatial-dimension dependent value, νc=2/d\nu_c=2/d, mean field like density scaling is recovered, but for ν<νc\nu<\nu_c the density scaling becomes non-trivial in agreement with field theoretic results and justifying phenomenological extensions of RPA. The structure of the polymer mesh in semidilute solutions is discussed in detail and comparisons with large scale Monte Carlo simulations are added. Finally a new possibility to determine the correction to scaling exponent ω12\omega_{12} is suggested.Comment: 11 pages, 5 figures; to be published in Phys. Rev. E (1999

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres
    • …
    corecore