3 research outputs found

    Entwicklung einer effizienten Hochstrom-Ionenquelle fĂĽr das FRANZ-Projekt zur Produktion intensiver, hochbrillanter Protonenstrahlen

    No full text
    Im Rahmen des FRANZ-Projektes wurde nach einer Ionenquelle verlangt welche in der Lage ist einen intensiven hochbrillanten Protonenstrahl von 200 mA bei 120 keV im Dauerstrichbetrieb zur Verfügung zu stellen, bei gleichzeitig niedriger Strahlemittanz. Der recht hohe Protonenstrom von 200 mA stellt dabei eine Herausforderung an den Experimentator dar. Die grundsätzliche Problematik bei der Entwicklung einer solchen Ionenquelle besteht im Wesentlichen darin, ein geeignetes Extraktionssystem zu designen, welches in der Lage ist den geforderten hohen Protonenstrom zu extrahieren und transportieren. In diesem Zusammenhang wurden Abschätzungen bezüglich des notwendigen Emissionsradius, der elektrischen Feldstärke im Extraktionsspalt sowie des Protonenanteils für den verlangten Protonenstrom von 200 mA durchgeführt. Für die praktische Umsetzung wurden Lösungsstrategien erarbeitet. Ziel war es die elektrische Feldstärke im Gap so hoch wie möglich und den Radius der Emissionsöffnung so klein wie möglich zu wählen, bei gleichzeitig möglichst hohem Protonenanteil. Basierend auf diesen Erkenntnissen wurde ein Prototyp der Bogenentladungs-Volumenionenquelle entwickelt und erfolgreich in Betrieb genommen. Zur Steigerung des Protonenanteils im Wasserstoffplasma wurden diverse Parameter der Ionenquelle optimiert wie bspw. Bogenleistung, Gasdruck sowie insbesondere die Feldverteilung und die magnetische Flussdichte des magnetischen Filters. Diese Ergebnisse wurden mit dem verbesserten theoretischen Modell zur Erzeugung von atomaren Wasserstoffionenstrahlen verglichen. Um die elektrische Feldstärke im Extraktionsspalt zu steigern wurden die Elektroden aus einem thermisch belastbaren Material hergestellt und einer speziellen Oberflächenbehandlung unterzogen. Des Weiteren wurden theoretische und experimentelle Untersuchungen bezüglich der Emissionsstromdichte und der Strahlqualität durchgeführt. Weiterhin wurde die Emittanz des Ionenstrahls berechnet sowie mit einer eigens am Institut für Angewandte Physik entwickelten Pepperpot-Emittanzmessanlage experimentell bestimmt. Die vorliegende Dissertation präsentiert die Ergebnisse der Entwicklung dieser hocheffizienten Bogenentladungs-Volumenionenquelle

    The driver linac of the neutron source FRANZ

    No full text
    This novel kind of neutron beam facility will provide 1 ns short neutron pulses with an approximately thermal energy distribution around 30 keV. The pulse repetition rate will be up to 250 kHz, the total proton number per pulse will be up to 6×1010 in the final stage, starting with a p – source current of 200 mA. A second target station will allow n – activation experiments by cw beam operation. An intense 2 MeV proton beam will drive a neutron source by the 7 Li (p,n) 7 Be reaction. The facility is under construction at the physics experimental hall of the J.W. Goethe – University. The 1m thick concrete tunnel was installed in 2009. In 2011 all rf amplifiers will be delivered and installed. Successful 200 mA proton source experiments in 2010 at a test stand will be followed by experiments on the 120 kV FRANZ terminal in 2011. The 250 kHz, 100 ns chopper in front of the rf linac is under construction, while the 2 MeV bunch compressor design was finished and the technical design of all components has started. The main accelerator cavity is under construction. First 2 MeV beam tests are expected for end of 2012

    LILac Energy Upgrade to 13 MeV

    No full text
    In the frame of the NICA (Nuclotron-based Ion Collider fAcility) ion collider upgrade a new light ion LINAC for protons and ions will be built in collaboration between JINR and BEVATECH GmbH. While ions with a mass-to-charge ratio up to 3 will be fed into the NUCLOTRON ring with an energy of 7 MeV/u, protons are supposed to be accelerated up to an energy of 13 MeV using a third IH structure. This energy upgrade comprises a third IH structure, a dual-use Debuncher cavity as well as an extension of the LLRF control system built on MicroTCA technology
    corecore