164 research outputs found

    The Significance of Vascular Alterations in Acute and Chronic Rejection for Vascularized Composite Allotransplantation.

    Full text link
    Vascularized composite allotransplantation (VCA) has emerged as a useful reconstructive option for patients suffering from major tissue defects and functional deficits. While the technical feasibility has been optimized and more than 130 VCAs have been performed during the last two decades, hurdles such as acute and chronic allograft rejection, graft deterioration, and eventual functional impairment need to be addressed. Recently, chronic graft rejection and progressive failure have been linked to vascular alterations observed in the allografts. Graft vasculopathy (GV) may play a pivotal role in long-term graft deterioration. The understanding of the underlying pathophysiological processes and their initial triggers is of utmost importance in the prevention, attenuation, and therapy of GV. While there are reports on the etiology and development of GV in solid organ transplantation, there are limited data with respect to chronic rejection and GV in the realm of VCA. Nevertheless, recent reports from long-term VCA recipients suggest that GV could truly jeopardize allografts in the follow-up evaluation. Chronic rejection and GV include different entities and might have different pathways in distinct organs. Herein, we reviewed the current literature on vascular changes during both acute and chronic allograft rejection, with a focus on their clinical and translational significance for VCA

    Abdominal, perineal, and genital soft tissue reconstruction with pedicled anterolateral thigh perforator flaps

    Full text link
    Background Pedicled perforator flaps have become a contemporary alternative to muscle flaps for soft tissue reconstruction as they have reduced donor site morbidity, avoid the need for microsurgical transfer, and are versatile and reliable. The anterolateral thigh (ALT) flap was first introduced as a free flap and has since gained popularity as a pedicled flap. Here we review our experience using pedicled ALT flaps for regional soft tissue reconstruction. Methods We retrospectively reviewed all patients who underwent loco-regional soft tissue reconstruction using pedicled ALT flaps between March 2014 and October 2018, with the goal of identifying potential applications of pedicled ALT flaps. The following aspects of each case were reviewed: patient demographics, defect location and size, comorbidities such as previous radiotherapy, flap details, clinical follow-up, and postoperative complications. Results Our analysis demonstrates the versatility of pedicled ALT flaps in a variety of indications to successfully cover large abdominal, perineal, and genital soft tissue defects. Depending on the patient’s needs to achieve more bulk or stability in the reconstruction, the ALT flap was individually tailored with underlying muscle or fascia. The average follow-up was 7 months (range: 3–13 months). Conclusions Pedicled ALT flaps are a valuable reconstructive option for soft tissue defects located within the pedicle’s range, from the lower abdomen to the perianal region. These flaps are usually raised from a non-irradiated donor site and are sufficient for covering extensive soft tissue defects. Three-dimensional reconstruction of the defect using pedicled ALT flaps allows for anatomical function and minor donor sites

    Predictors for limb amputation and reconstructive management in electrical injuries

    Full text link
    BACKGROUND Electrical injuries follow a specific pathophysiology and may progressively damage both skin and deeper tissues, frequently ending in amputations. Type and timing of soft tissue reconstruction after electrical burns is crucial for proper outcome. The aim of this study was to assess surgical management and outcome of patients with electrical injuries treated at the Zurich Burn Center over the last 15 years, with emphasis on risk factors for amputation and reconstructive strategy. METHODS Patient charts were reviewed retrospectively to identify cases admitted at the Zurich Burns Center (2005-2019). Patient characteristics and surgical management, with a special focus on amputations, reconstruction and outcome were analyzed and risk factors for amputation were assessed. RESULTS Eighty-nine patients were identified and a total of 522 operations were performed. Escharotomy and fasciotomies were performed in 40.5% and 24.7% of cases, respectively, mainly at admission. The total amputation rate was 13.5% (23 amputations, 12 patients). Development of compartment syndrome, rhabdomyolysis, high myoglobin and CK blood levels, kidney failure, sepsis and respiratory complications during the course were related to higher risk of amputation (p < 0.001). Sixty-six flap-based reconstructions were performed (25% cases): 49 loco-regional flaps, 3 distant pedicled flaps, 14 free flaps. Two flaps were lost (flap failure rate 14%). Both flap losses occurred in cases of early reconstruction (within 5-21 days). CONCLUSIONS Electrical injuries are still cause of elevated morbidity and mortality, with high amputation rate. Predictors for amputation can support physicians in the surgical care and decision-making. Reconstruction remains challenging in this type of injury: the surgical management with early decompression, serial necrectomies and delayed early reconstruction remains the procedure of choice at our unit

    Outcome of Facial Burn Injuries Treated by a Nanofibrous Temporary Epidermal Layer

    Full text link
    Background: The face is commonly affected in thermal injuries, with a demand for proper recognition and the correct choice of treatment to guarantee optimal aesthetic and functional outcomes. It is highly vascularized and often heals conservatively, highlighting the particular relevance of conservative treatment modalities, many of which require daily re-applications or dressing changes, which can be painful and tedious for both the patient and the healthcare providers. Motivated by encouraging results of a novel temporary nanofibrous epidermal layer, we herein present a case series of this technology in a case series of patients suffering from facial burns and treated in our Burn Center. Patients and Methods: Patients with superficial partial-thickness facial burns and mixed pattern burns, which were treated with SpinCare™, an electrospun nanofibrous temporary epidermal layer, between 2019 and 2021, at our institution were analyzed retrospectively. The Manchester scar scale (MSS) and numeric rating scale (NRS) were used for scar, pain, and outcome evaluation at different time points by five independent board-certified plastic surgeons with profound experience in burn surgery. Results: Ten patients (m = 9; f = 1) were treated and evaluated retrospectively. The mean age was 38.8 ± years (SD ± 17.85). The mean healing time was 6.4 days (SD ± 1.56). The mean follow-up was 16.4 months (SD ± 11.33). The mean MSS score was 5.06 (SD ± 1.31), and the mean NRS Score for pain was significantly reduced from initially 7 to 0.875 upon application (mean (pre-application) 7 ± 0.7 and (application) 0.875 ± 1.26; p ≤ 0.0001). Patients reported a NRS score of 10 in terms of functional and cosmetic outcomes at their final follow-up appointment. No adverse effects were observed. Conclusions: The application of a nanofibrous temporary epidermal layer such as SpinCare™ represents a relatively easy-to-use, well-tolerated, and effective alternative for the treatment of partial-thickness facial burns

    Methacrylated Gelatin as a Scaffold for Mechanically Isolated Stromal Vascular Fraction for Cutaneous Wound Repair

    Get PDF
    Mechanically processed stromal vascular fraction (mSVF) is a highly interesting cell source for regenerative purposes, including wound healing, and a practical alternative to enzymatically isolated SVF. In the clinical context, SVF benefits from scaffolds that facilitate viability and other cellular properties. In the present work, the feasibility of methacrylated gelatin (GelMA), a stiffness-tunable, light-inducible hydrogel with high biocompatibility is investigated as a scaffold for SVF in an in vitro setting. Lipoaspirates from elective surgical procedures were collected and processed to mSVF and mixed with GelMA precursor solutions. Non-encapsulated mSVF served as a control. Viability was measured over 21 days. Secreted basic fibroblast growth factor (bFGF) levels were measured on days 1, 7 and 21 by ELISA. IHC was performed to detect VEGF-A, perilipin-2, and CD73 expression on days 7 and 21. The impact of GelMA-mSVF on human dermal fibroblasts was measured in a co-culture assay by the same viability assay. The viability of cultured GelMA-mSVF was significantly higher after 21 days (p < 0.01) when compared to mSVF alone. Also, GelMA-mSVF secreted stable levels of bFGF over 21 days. While VEGF-A was primarily expressed on day 21, perilipin-2 and CD73-positive cells were observed on days 7 and 21. Finally, GelMA-mSVF significantly improved fibroblast viability as compared with GelMA alone (p < 0.01). GelMA may be a promising scaffold for mSVF as it maintains cell viability and proliferation with the release of growth factors while facilitating adipogenic differentiation, stromal cell marker expression and fibroblast proliferation

    Characteristics and Immunomodulating Functions of Adipose-Derived and Bone Marrow-Derived Mesenchymal Stem Cells Across Defined Human Leukocyte Antigen Barriers

    Get PDF
    BackgroundVascularized composite allotransplantation opens new possibilities in reconstructive transplantation such as hand or face transplants. Lifelong immunosuppression and its side-effects are the main drawbacks of this procedure. Mesenchymal stem cells (MSCs) have clinically useful immunomodulatory effects and may be able to reduce the burden of chronic immunosuppression. Herein, we assess and compare characteristics and immunomodulatory capacities of bone marrow- and adipose tissue-derived MSCs isolated from the same human individual across defined human leukocyte antigen (HLA) barriers.Materials and methodsSamples of omental (o.) adipose tissue, subcutaneous (s.c.) adipose tissue, and bone marrow aspirate from 10 human organ donors were retrieved and MSCs isolated. Cells were characterized by flow cytometry and differentiated in three lineages: adipogenic, osteogenic, and chondrogenic. In mixed lymphocyte reactions, the ability of adipose-derived mesenchymal stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) to suppress the immune response was assessed and compared within individual donors. HLA mismatched or mitogen stimulations were analyzed in co-culture with different MSC concentrations. Supernatants were analyzed for cytokine contents.ResultsAll cell types, s.c.ASC, o.ASC, and BMSC demonstrated individual differentiation potential and cell surface markers. Immunomodulating effects were dependent on dose and cell passage. Proliferation of responder cells was most effectively suppressed by s.c.ASCs and combination with BMSC resulted in highly efficient immunomodulation. Immunomodulation was not cell contact-dependent and cells demonstrated a specific cytokine secretion.ConclusionWhen human ASCs and BMSCs are isolated from the same individual, both show effective immunomodulation across defined HLA barriers in vitro. We demonstrate a synergistic effect when cells from the same biologic system were combined. This cell contact-independent function underlines the potential of clinical systemic application of MSCs

    Joint Observation of the Galactic Center with MAGIC and CTA-LST-1

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore