3,579 research outputs found
Non-equilibrium dynamics of an active colloidal "chucker"
We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal
particle which emits smaller solute particles from its surface, isotropically
and at a constant rate k_c. We find that the diffusion constant of the chucker
increases for small k_c, as recently predicted theoretically. At large k_c the
chucker diffuses more slowly due to crowding effects. We compare our simulation
results to those of a "point particle" Langevin dynamics scheme in which the
solute concentration field is calculated analytically, and in which
hydrodynamic effects can be included albeit in an approximate way. By
simulating the dragging of a chucker, we obtain an estimate of its apparent
mobility coefficient which violates the fluctuation-dissipation theorem. We
also characterise the probability density profile for a chucker which sediments
onto a surface which either repels or absorbs the solute particles, and find
that the steady state distributions are very different in the two cases. Our
simulations are inspired by the biological example of
exopolysaccharide-producing bacteria, as well as by recent experimental,
simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment
Active Brownian particles with velocity-alignment and active fluctuations
We consider a model of active Brownian particles with velocity-alignment in
two spatial dimensions with passive and active fluctuations. Hereby, active
fluctuations refers to purely non-equilibrium stochastic forces correlated with
the heading of an individual active particle. In the simplest case studied
here, they are assumed as independent stochastic forces parallel (speed noise)
and perpendicular (angular noise) to the velocity of the particle. On the other
hand, passive fluctuations are defined by a noise vector independent of the
direction of motion of a particle, and may account for example for thermal
fluctuations.
We derive a macroscopic description of the active Brownian particle gas with
velocity-alignment interaction. Hereby, we start from the individual based
description in terms of stochastic differential equations (Langevin equations)
and derive equations of motion for the coarse grained kinetic variables
(density, velocity and temperature) via a moment expansion of the corresponding
probability density function.
We focus here in particular on the different impact of active and passive
fluctuations on the onset of collective motion and show how active fluctuations
in the active Brownian dynamics can change the phase-transition behaviour of
the system. In particular, we show that active angular fluctuation lead to an
earlier breakdown of collective motion and to emergence of a new bistable
regime in the mean-field case.Comment: 5 figures, 22 pages, submitted to New Journal of Physic
Infrared Spectra and Spectral Energy Distributions of Late-M- and L-Dwarfs
We have obtained 1.0-2.5um spectra at R~600 of 14 disk dwarfs with spectral
types M6 to L7. For four of the dwarfs we have also obtained infrared spectra
at R~3000 in narrow intervals. In addition, we present new L' photometry for
four of the dwarfs in the sample, which allows improved determinations of their
bolometric luminosities. We resolve the L-dwarf Denis-P J 0205-1159 into an
identical pair of objects separated by 0.35". The spectra, with the published
energy distribution for one other dwarf, are compared to synthetic spectra
generated by upgraded model atmospheres. Good matches are found for 2200> Teff
K>1900 (spectral types around M9 to L3), but discrepancies exist at Teff> 2300
K (M8) and for Teff<1800 K (L4-L7). At the higher temperatures the mismatches
are due to incompleteness in the water vapor linelist. At the lower
temperatures the disagreement is probably due to our treatment of dust: we
assume a photospheric distribution in equilibrium with the gas phase. We derive
effective temperatures for the sample from the comparison with synthetic
spectra and also by comparing our observed total intrinsic luminosities to
structural model calculations (which are mostly independent of the atmosphere
but are dependent on the unknown masses and ages of the targets). The two
derivations agree to ~200 K except for the faintest object in the sample where
the discrepancy is larger. Agreement with other temperature determinations is
also ~200 K, except for the L7 dwarf.Comment: 31 pages incl. 5 Tables and 12 Figures, accepted by ApJ for Feb 2001
issu
Photostimulated Luminescence and Thermoluminescence of LSO Scintillators
Photostimulated luminescence (PSL) and thermoluminescence (TL) from five Lu_(2(1-x))Ce_(2x)(SiO_4)O (LSO) crystals with different light outputs is reported. Optical irradiation into the Ce^(3+) absorption bands causes the appearance of a broad absorption band near 280 nm which is ascribed to Ce^(4+). In addition, a tail is observed extending beyond 700 nm. Optical irradiation into this tail (PSL) or heating of the crystal (TL) results in Ce^(3+) emission. It is shown that both PSL and TL are due to the same traps: In addition, an anti-correlation is found between the light output under gamma-ray irradiation and the trap concentration in the crystal. The nature of the recombination centers responsible for the low light output in some crystals is not clear. Annealing experiments suggest that the traps and the recombination centers may be related to oxygen vacancies
Photostimulated Luminescence and Thermoluminescence of LSO Scintillators
Photostimulated luminescence (PSL) and thermoluminescence (TL) from five Lu_(2(1-x/)Ce)_(2x)/(SiO_4)O (LSO) crystals with different light outputs is reported. Optical irradiation into the Ce^(3+) absorption bands causes the appearance of a broad absorption band near 280 nn which is ascribed to Ce^(4+). In addition, a tail is observed extending beyond 700 nm. Optical irradiation into this tail (PSL) or heating of the crystal (TL) results in Ce^(3+) emission. It is shown that both PSL and TL are due to the same traps: In addition, an anti-correlation is found between the light output under gamma-ray irradiation and the trap concentration in the crystal. The nature of the recombination centers responsible for the low light output in some crystals is not clear. Annealing experiments suggest that the traps and the recombination centers may be related to oxygen vacancies
Are there approximate relations among transverse momentum dependent distribution functions?
Certain exact relations among transverse momentum dependent parton
distribution functions due to QCD equations of motion turn into approximate
ones upon the neglect of pure twist-3 terms. On the basis of available data
from HERMES we test the practical usefulness of one such
``Wandzura-Wilczek-type approximation'', namely of that connecting
h_{1L}^{\perp(1)a}(x) to h_L^a(x), and discuss how it can be further tested by
future CLAS and COMPASS data.Comment: 9 pages, 3 figure
Diffusing opinions in bounded confidence processes
We study the effects of diffusing opinions on the Deffuant et al. model for
continuous opinion dynamics. Individuals are given the opportunity to change
their opinion, with a given probability, to a randomly selected opinion inside
an interval centered around the present opinion. We show that diffusion induces
an order-disorder transition. In the disordered state the opinion distribution
tends to be uniform, while for the ordered state a set of well defined opinion
clusters are formed, although with some opinion spread inside them. If the
diffusion jumps are not large, clusters coalesce, so that weak diffusion favors
opinion consensus. A master equation for the process described above is
presented. We find that the master equation and the Monte-Carlo simulations do
not always agree due to finite-size induced fluctuations. Using a linear
stability analysis we can derive approximate conditions for the transition
between opinion clusters and the disordered state. The linear stability
analysis is compared with Monte Carlo simulations. Novel interesting phenomena
are analyzed
Risk-Seeking versus Risk-Avoiding Investments in Noisy Periodic Environments
We study the performance of various agent strategies in an artificial
investment scenario. Agents are equipped with a budget, , and at each
time step invest a particular fraction, , of their budget. The return on
investment (RoI), , is characterized by a periodic function with
different types and levels of noise. Risk-avoiding agents choose their fraction
proportional to the expected positive RoI, while risk-seeking agents
always choose a maximum value if they predict the RoI to be positive
("everything on red"). In addition to these different strategies, agents have
different capabilities to predict the future , dependent on their
internal complexity. Here, we compare 'zero-intelligent' agents using technical
analysis (such as moving least squares) with agents using reinforcement
learning or genetic algorithms to predict . The performance of agents is
measured by their average budget growth after a certain number of time steps.
We present results of extensive computer simulations, which show that, for our
given artificial environment, (i) the risk-seeking strategy outperforms the
risk-avoiding one, and (ii) the genetic algorithm was able to find this optimal
strategy itself, and thus outperforms other prediction approaches considered.Comment: 27 pp. v2 with minor corrections. See http://www.sg.ethz.ch for more
inf
Rotational quenching of CO due to H collisions
Rate coefficients for state-to-state rotational transitions in CO induced by
both para- and ortho-H collisions are presented. The results were obtained
using the close-coupling method and the coupled-states approximation, with the
CO-H interaction potential of Jankowski & Szalewicz (2005). Rate
coefficients are presented for temperatures between 1 and 3000 K, and for
CO() quenching from to all lower levels. Comparisons
with previous calculations using an earlier potential show some discrepancies,
especially at low temperatures and for rotational transitions involving large
. The differences in the well depths of the van der Waals
interactions in the two potential surfaces lead to different resonance
structures in the energy dependence of the cross sections which influence the
low temperature rate coefficients. Applications to far infrared observations of
astrophysical environments are briefly discussed.Comment: 28 pages, 10 figure
- …