3,509 research outputs found

    Azimuthal spin asymmetries in light-cone constituent quark models

    Full text link
    We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of the model, especially with regard to the scale dependence of the observables and the transverse-momentum dependence of the distributions. We find good agreement with available experimental data and present predictions to be further tested by future CLAS, COMPASS and HERMES data.Comment: 23 pages, 14 figures, 1 tabl

    TMDs and Azimuthal Spin Asymmetries in a Light-Cone Quark Model

    Get PDF
    The main properties of the leading-twist transverse momentum dependent parton distributions in a light-cone constituent quark model of the nucleon are reviewed, with focus on the role of the spin-spin and spin-orbit correlations of quarks. Results for azimuthal single spin asymmetries in semi-inclusive deep inelastic scattering are also discussed.Comment: Proceedings of SPIN2008, 6-11 October 2008, Charlottesville, VA, US

    Transverse momentum dependent parton distributions and azimuthal asymmetries in light-cone quark models

    Full text link
    We review the information on the spin and orbital angular momentum structure of the nucleon encoded in the T-even transverse momentum dependent parton distributions within light-cone quark models. Model results for azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering are discussed, showing a good agreement with available experimental data and providing predictions to be further tested by future CLAS, COMPASS and HERMES data.Comment: 6 pages, 4 figures; proceedings of the "XIII Workshop On High Energy Spin Physics Dubna Spin 2009", 1-5 September 2009, Dubna, Russi

    Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates

    Full text link
    The critical two-terminal conductance gcg_c and the spatial fluctuations of critical eigenstates are investigated for a disordered two dimensional model of non-interacting electrons subject to spin-orbit scattering (Ando model). For square samples, we verify numerically the relation σc=1/[2π(2D(1))]e2/h\sigma_c=1/[2\pi(2-D(1))] e^2/h between critical conductivity σc=gc=(1.42±0.005)e2/h\sigma_c=g_c=(1.42\pm 0.005) e^2/h and the fractal information dimension of the electron wave function, D(1)=1.889±0.001D(1)=1.889\pm 0.001. Through a detailed numerical scaling analysis of the two-terminal conductance we also estimate the critical exponent ν=2.80±0.04\nu=2.80\pm 0.04 that governs the quantum phase transition.Comment: IOP Latex, 7 figure

    Ferroelectric properties of charge-ordered alpha-(BEDT-TTF)2I3

    Get PDF
    A detailed investigation of the out-of-plane electrical properties of charge-ordered alpha-(BEDT-TTF)2I3 provides clear evidence for ferroelectricity. Similar to multiferroic alpha-(BEDT-TTF)2Cu[N(CN)2]Cl, the polar order in this material is ascribed to the occurrence of bond- and site-centered charge order. Dielectric response typical for relaxor ferroelectricity is found deep in the charge-ordered state. We suggest an explanation in terms of the existence of polar and nonpolar stacks of the organic molecules in this material, preventing long-range ferroelectricity. The results are discussed in relation to the formation or absence of electronic polar order in related charge-transfer salts.Comment: 8 pages, 4 figures. Revised version as accepted for publication in Phys. Rev.

    Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program

    Get PDF
    We describe the parallel implementation of our generalized stellar atmosphere and NLTE radiative transfer computer program PHOENIX. We discuss the parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. Our implementation uses a MIMD design based on a relatively small number of MPI library calls. We report the results of test calculations on a number of different parallel computers and discuss the results of scalability tests.Comment: To appear in ApJ, 1997, vol 483. LaTeX, 34 pages, 3 Figures, uses AASTeX macros and styles natbib.sty, and psfig.st

    Boundary multifractality in critical 1D systems with long-range hopping

    Get PDF
    Boundary multifractality of electronic wave functions is studied analytically and numerically for the power-law random banded matrix (PRBM) model, describing a critical one-dimensional system with long-range hopping. The peculiarity of the Anderson localization transition in this model is the existence of a line of fixed points describing the critical system in the bulk. We demonstrate that the boundary critical theory of the PRBM model is not uniquely determined by the bulk properties. Instead, the boundary criticality is controlled by an additional parameter characterizing the hopping amplitudes of particles reflected by the boundary.Comment: 7 pages, 4 figures, some typos correcte

    Finding cool subdwarfs using a V-J reduced proper-motion diagram: Stellar parameters for 91 candidates

    Full text link
    We present the results of a search for cool subdwarfs for which our candidates were drawn from a V-J reduced proper-motion diagram constructed by Salim & Gould (2002). Kinematic (U, V, and W) and self-consistent stellar parameters (Teff, log g, [Fe/H], and V_t) are derived for 91 candidate subdwarfs based on high resolution spectra. The observed stars span 3900K < Teff < 6200K and -2.63 < [Fe/H] < 0.25 including only 3 giants (log g < 4.0). Of the sample, 77 stars have MgH lines present in their spectra. With more than 56% of our candidate subdwarfs having [Fe/H] < -1.5, we show that the V-J reduced proper-motion diagram readily identifies metal-poor stars.Comment: PASP (in press

    Anomalous Lattice Response at the Mott Transition in a Quasi-2D Organic Conductor

    Full text link
    Discontinuous changes of the lattice parameters at the Mott metal-insulator transition are detected by high-resolution dilatometry on deuterated crystals of the layered organic conductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br. The uniaxial expansivities uncover a striking and unexpected anisotropy, notably a zero-effect along the in-plane c-axis along which the electronic interactions are relatively strong. A huge thermal expansion anomaly is observed near the end-point of the first-order transition line enabling to explore the critical behavior with very high sensitivity. The analysis yields critical fluctuations with an exponent α~\tilde{\alpha} \simeq 0.8 ±\pm 0.15 at odds with the novel criticality recently proposed for these materials [Kagawa \textit{et al.}, Nature \textbf{436}, 534 (2005)]. Our data suggest an intricate role of the lattice degrees of freedom in the Mott transition for the present materials.Comment: 4 pages, 4 figure
    corecore