1,472 research outputs found

    Quark orbital angular momentum: can we learn about it from GPDs and TMDs?

    Full text link
    It is known how to access information on quark orbital angular momentum from generalized parton distribution functions, in a certain specified framework. It is intuitively expected, that such information can be accessed also through transverse momentum dependent distribution functions, but not known how. Now quark models provide promising hints. Recent results are reviewed.Comment: proceeding of the "4th Workshop on Exclusive Reactions at High Momentum Transfer," 18-21 May 2010, Jefferson La

    Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion

    Full text link
    Transverse parton momentum dependent distribution functions (TMDs) of the nucleon are studied in a covariant model, which describes the intrinsic motion of partons in terms of a covariant momentum distribution. The consistency of the approach is demonstrated, and model relations among TMDs are studied. As a byproduct it is shown how the approach allows to formulate the non-relativistic limit.Comment: 16 page

    Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics

    Full text link
    We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known solutions for conservative systems can be used for an extension of the dynamics, which also includes elements such as the take-up/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically tractable model, while still covering important features of non-equilibrium systems. In our paper, this approach is used to derive a rather general swarm model that considers (a) the energetic conditions of swarming, i.e. for active motion, (b) interactions between the particles based on global couplings. We derive analytical expressions for the non-equilibrium velocity distribution and the mean squared displacement of the swarm. Further, we investigate the influence of different global couplings on the overall behavior of the swarm by means of particle-based computer simulations and compare them with the analytical estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref. updated. For related work see also: http://summa.physik.hu-berlin.de/~frank/active.htm

    A k-shell decomposition method for weighted networks

    Full text link
    We present a generalized method for calculating the k-shell structure of weighted networks. The method takes into account both the weight and the degree of a network, in such a way that in the absence of weights we resume the shell structure obtained by the classic k-shell decomposition. In the presence of weights, we show that the method is able to partition the network in a more refined way, without the need of any arbitrary threshold on the weight values. Furthermore, by simulating spreading processes using the susceptible-infectious-recovered model in four different weighted real-world networks, we show that the weighted k-shell decomposition method ranks the nodes more accurately, by placing nodes with higher spreading potential into shells closer to the core. In addition, we demonstrate our new method on a real economic network and show that the core calculated using the weighted k-shell method is more meaningful from an economic perspective when compared with the unweighted one.Comment: 17 pages, 6 figure
    corecore