13 research outputs found

    Graz Endocrine Causes of Hypertension (GECOH) study: a diagnostic accuracy study of aldosterone to active renin ratio in screening for primary aldosteronism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary aldosteronism (PA) affects approximately 5 to 10% of all patients with arterial hypertension and is associated with an excess rate of cardiovascular complications that can be significantly reduced by a targeted treatment. There exists a general consensus that the aldosterone to renin ratio should be used as a screening tool but valid data about the accuracy of the aldosterone to renin ratio in screening for PA are sparse. In the Graz endocrine causes of hypertension (GECOH) study we aim to prospectively evaluate diagnostic procedures for PA.</p> <p>Methods and design</p> <p>In this single center, diagnostic accuracy study we will enrol 400 patients that are routinely referred to our tertiary care center for screening for endocrine hypertension. We will determine the aldosterone to active renin ratio (AARR) as a screening test. In addition, all study participants will have a second determination of the AARR and will undergo a saline infusion test (SIT) as a confirmatory test. PA will be diagnosed in patients with at least one AARR of ≥ 5.7 ng/dL/ng/L (including an aldosterone concentration of ≥ 9 ng/dL) who have an aldosterone level of ≥ 10 ng/dL after the saline infusion test. As a primary outcome we will calculate the receiver operating characteristic curve of the AARR in diagnosing PA. Secondary outcomes include the test characteristics of the saline infusion test involving a comparison with 24 hours urine aldosterone levels and the accuracy of the aldosterone to renin activity ratio in diagnosing PA. In addition we will evaluate whether the use of beta-blockers significantly alters the accuracy of the AARR and we will validate our laboratory methods for aldosterone and renin.</p> <p>Conclusion</p> <p>Screening for PA with subsequent targeted treatment is of great potential benefit for hypertensive patients. In the GECOH study we will evaluate a standardised procedure for screening and diagnosing of this disease.</p

    Identification of Novel Intronic SNPs in Transporter Genes Associated with Metformin Side Effects

    No full text
    Metformin is a widely used and effective medication in type 2 diabetes (T2DM) as well as in polycystic ovary syndrome (PCOS). Single nucleotide polymorphisms (SNPs) contribute to the occurrence of metformin side effects. The aim of the present study was to identify intronic genetic variants modifying the occurrence of metformin side effects and to replicate them in individuals with T2DM and in women with PCOS. We performed Next Generation Sequencing (Illumina Next Seq) of 115 SNPs in a discovery cohort of 120 metformin users and conducted a systematic literature review. Selected SNPs were analysed in two independent cohorts of individuals with either T2DM or PCOS, using 5′-3′exonucleaseassay. A total of 14 SNPs in the organic cation transporters (OCTs) showed associations with side effects in an unadjusted binary logistic regression model, with eight SNPs remaining significantly associated after appropriate adjustment in the discovery cohort. Five SNPs were confirmed in a combined analysis of both replication cohorts but showed different association patterns in subgroup analyses. In an unweighted polygenic risk score (PRS), the risk for metformin side effects increased with the number of risk alleles. Intronic SNPs in the OCT cluster contribute to the development of metformin side effects in individuals with T2DM and in women with PCOS and are therefore of interest for personalized therapy options

    Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae

    No full text
    Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F(402)L (one mutant), F(420)L (one mutant), and P(430)S (five mutants) in the C-terminal part of the protein; and three mutants carried an L(251)F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L(251)F exchange and the other resulting in an F(433)S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine

    Risk of insulin resistance and metabolic syndrome in women with hyperandrogenemia: A comparison between pcos phenotypes and beyond

    No full text
    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in premeno-pausal women, with a wide spectrum of possible phenotypes, symptoms and sequelae according to the current clinical definition. However, there are women who do not fulfill at least two out of the three commonly used “Rotterdam criteria” and their risk of developing type 2 diabetes or obesity later in life is not defined. Therefore, we addressed this important gap by conducting a retrospective analysis based on 750 women with and without PCOS. We compared four different PCOS pheno-types according to the Rotterdam criteria with women who exhibit only one Rotterdam criterion and with healthy controls. Hormone and metabolic differences were assessed by analysis of vari-ance (ANOVA) as well as logistic regression analysis. We found that hyperandrogenic women have per se a higher risk of developing insulin resistance compared to phenotypes without hyperandro-genism and healthy controls. In addition, hyperandrogenemia is associated with developing insulin resistance also in women with no other Rotterdam criterion. Our study encourages further diagnostic and therapeutic approaches for PCOS phenotypes in order to account for varying risks of developing metabolic diseases. Finally, women with hyperandrogenism as the only symptom should also be screened for insulin resistance to avoid later metabolic risks

    Dp-ucMGP as a Biomarker in Sarcopenia

    No full text
    Sarcopenia is linked with an increased risk of falls, osteoporosis and mortality and is an increasing problem for healthcare systems. No satisfying biomarkers for sarcopenia diagnosis exist, connecting bone, fat and muscle. Matrix-GLA-protein (MGP) is an adipokine that regulates bone metabolism and is associated with decreased muscle strength. Associations of dp-ucMGP were analyzed in the BioPersMed cohort (58 &plusmn; 9 years), including 1022 asymptomatic subjects at moderate cardiovascular risk. Serum measurements of dp-ucMGP in 760 persons were performed with the InaKtif MGP Kit with the IDS-iSYS Multi-Discipline Automated System. DXA data (792 persons) measured with the Lunar iDXA system and physical performance data (786 persons) were available. Dp-ucMGP plasma levels correlate with sarcopenia parameters like gait speed (&rho; = &minus;0.192, p &lt; 0.001), appendicular skeletal muscle mass (&rho; = 0.102, p = 0.005) and appendicular skeletal muscle mass index (&rho; = 0.112, p = 0.001). They are lower in persons with sarcopenia (p &lt; 0.001) and higher in persons with reduced physical performance (p = 0.019). Persons in the lowest dp-ucMGP quartile have the highest risk for reduced muscle mass, decreasing with each quartile, whereas persons in the highest quartile have the highest risk of reduced muscle strength. Dp-ucMGP might be a good biomarker candidate in sarcopenia characterization

    DXA-Derived Indices in the Characterisation of Sarcopenia

    No full text
    Sarcopenia is linked with increased risk of falls, osteoporosis and mortality. No consensus exists about a gold standard &ldquo;dual-energy X-ray absorptiometry (DXA) index for muscle mass determination&rdquo; in sarcopenia diagnosis. Thus, many indices exist, but data on sarcopenia diagnosis agreement are scarce. Regarding sarcopenia diagnosis reliability, the impact of influencing factors on sarcopenia prevalence, diagnosis agreement and reliability are almost completely missing. For nine DXA-derived muscle mass indices, we aimed to evaluate sarcopenia prevalence, diagnosis agreement and diagnosis reliability, and investigate the effects of underlying parameters, presence or type of adjustment and cut-off values on all three outcomes. The indices were analysed in the BioPersMed cohort (58 &plusmn; 9 years), including 1022 asymptomatic subjects at moderate cardiovascular risk. DXA data from 792 baselines and 684 follow-up measurements (for diagnosis agreement and reliability determination) were available. Depending on the index and cut-off values, sarcopenia prevalence varied from 0.6 to 36.3%. Height-adjusted parameters, independent of underlying parameters, showed a relatively high level of diagnosis agreement, whereas unadjusted and adjusted indices showed low diagnosis agreement. The adjustment type defines which individuals are recognised as sarcopenic in terms of BMI and sex. The investigated indices showed comparable diagnosis reliability in follow-up examination

    Expression Profiles of miR-22-5p and miR-142-3p Indicate Hashimoto&rsquo;s Disease and Are related to Thyroid Antibodies

    No full text
    Hashimoto&rsquo;s thyroiditis (HT) is the most prevalent autoimmune disorder of the thyroid (AITD) and characterized by the presence of circulating autoantibodies evoked by a, to date, not fully understood dysregulation of the immune system. Autoreactive lymphocytes and inflammatory processes in the thyroid gland can impair or enhance thyroid hormone secretion. MicroRNAs (miRNAs) are small noncoding RNAs, which can play a pivotal role in immune functions and the development of autoimmunity. The aim of the present study was to evaluate whether the expression of 9 selected miRNAs related to immunological functions differ in patients with HT compared to healthy controls. MiRNA profiles were analysed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 24 patients with HT and 17 healthy controls. Systemic expressions of miR-21-5p, miR-22-3p, miR-22-5p, miR-142-3p, miR-146a-5p, miR-301-3p and miR-451 were significantly upregulated in patients with HT (p &le; 0.01) and were suitable to discriminate between HT and healthy controls in AUC analysis. Altered expressions of miR-22-5p and miR-142-3p were associated with higher levels of thyroid antibodies, suggesting their contribution to the pathogenesis of HT
    corecore