5,848 research outputs found
Effect of a rotating propeller on the separation angle of attack and distortion in ducted propeller inlets
The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propeller removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller
- and -spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects
A study of donor electron spins and spin--dependent electronic transitions
involving phosphorous (P) atoms in proximity of the (111) oriented
crystalline silicon (c-Si) to silicon dioxide (SiO) interface is
presented for [P] = 10 and [P] =
10 at about liquid He temperatures (
). Using pulsed electrically detected magnetic
resonance (pEDMR), spin--dependent transitions between the \Phos donor state
and two distinguishable interface states are observed, namely (i) \Pb centers
which can be identified by their characteristic anisotropy and (ii) a more
isotropic center which is attributed to E defects of the \sio bulk
close to the interface. Correlation measurements of the dynamics of
spin--dependent recombination confirm that previously proposed transitions
between \Phos and the interface defects take place. The influence of these
electronic near--interface transitions on the \Phos donor spin coherence time
as well as the donor spin--lattice relaxation time is then
investigated by comparison of spin Hahn--echo decay measurements obtained from
conventional bulk sensitive pulsed electron paramagnetic resonance and surface
sensitive pEDMR, as well as surface sensitive electrically detected inversion
recovery experiments. The measurements reveal that both and of
\Phos donor electrons spins in proximity of energetically lower interface
states at K are reduced by several orders of magnitude
Direct Observation of Quantum Coherence in Single-Molecule Magnets
Direct evidence of quantum coherence in a single-molecule magnet in frozen
solution is reported with coherence times as long as T2 = 630 ns. We can
strongly increase the coherence time by modifying the matrix in which the
single-molecule magnets are embedded. The electron spins are coupled to the
proton nuclear spins of both the molecule itself and interestingly, also to
those of the solvent. The clear observation of Rabi oscillations indicates that
we can manipulate the spin coherently, an essential prerequisite for performing
quantum computations.Comment: 5 Pages, 4 Figures, final version published in PR
Measuring errors in single qubit rotations by pulsed electron paramagnetic resonance
The ability to measure and reduce systematic errors in single-qubit logic
gates is crucial when evaluating quantum computing implementations. We describe
pulsed electron paramagnetic resonance (EPR) sequences that can be used to
measure precisely even small systematic errors in rotations of
electron-spin-based qubits. Using these sequences we obtain values for errors
in rotation angle and axis for single-qubit rotations using a commercial EPR
spectrometer. We conclude that errors in qubit operations by pulsed EPR are not
limiting factors in the implementation of electron-spin based quantum
computers
High Fidelity Single Qubit Operations using Pulsed EPR
Systematic errors in spin rotation operations using simple RF pulses place
severe limitations on the usefulness of the pulsed magnetic resonance methods
in quantum computing applications. In particular, the fidelity of quantum logic
operations performed on electron spin qubits falls well below the threshold for
the application of quantum algorithms. Using three independent techniques, we
demonstrate the use of composite pulses to improve this fidelity by several
orders of magnitude. The observed high-fidelity operations are limited by pulse
phase errors, but nevertheless fall within the limits required for the
application of quantum error correction.Comment: 4 pages, 3 figures To appear in Phys. Rev. Let
Transport and recombination through weakly coupled localized spin pairs in semiconductors during coherent spin excitation
Semi-analytical predictions for the transients of spin-dependent transport
and recombination rates through localized states in semiconductors during
coherent electron spin excitation are made for the case of weakly spin-coupled
charge carrier ensembles. The results show that the on-resonant Rabi frequency
of electrically or optically detected spin-oscillation doubles abruptly as the
strength of the resonant microwave field gamma B_1 exceeds the Larmor frequency
separation within the pair of charge carrier states between which the transport
or recombination transition takes place. For the case of a Larmor frequency
separation of the order of gamma B_1 and arbitrary excitation frequencies, the
charge carrier pairs exhibit four different nutation frequencies. From the
calculations, a simple set of equations for the prediction of these frequencies
is derived
Coherent state transfer between an electron- and nuclear spin in 15N@C60
Electron spin qubits in molecular systems offer high reproducibility and the
ability to self assemble into larger architectures. However, interactions
between neighbouring qubits are 'always-on' and although the electron spin
coherence times can be several hundred microseconds, these are still much
shorter than typical times for nuclear spins. Here we implement an
electron-nuclear hybrid scheme which uses coherent transfer between electron
and nuclear spin degrees of freedom in order to both controllably turn on/off
dipolar interactions between neighbouring spins and benefit from the long
nuclear spin decoherence times (T2n). We transfer qubit states between the
electron and 15N nuclear spin in 15N@C60 with a two-way process fidelity of
88%, using a series of tuned microwave and radiofrequency pulses and measure a
nuclear spin coherence lifetime of over 100 ms.Comment: 5 pages, 3 figures with supplementary material (8 pages
Electron spin coherence in metallofullerenes: Y, Sc and La@C82
Endohedral fullerenes encapsulating a spin-active atom or ion within a carbon
cage offer a route to self-assembled arrays such as spin chains. In the case of
metallofullerenes the charge transfer between the atom and the fullerene cage
has been thought to limit the electron spin phase coherence time (T2) to the
order of a few microseconds. We study electron spin relaxation in several
species of metallofullerene as a function of temperature and solvent
environment, yielding a maximum T2 in deuterated o-terphenyl greater than 200
microseconds for Y, Sc and La@C82. The mechanisms governing relaxation (T1, T2)
arise from metal-cage vibrational modes, spin-orbit coupling and the nuclear
spin environment. The T2 times are over 2 orders of magnitude longer than
previously reported and consequently make metallofullerenes of interest in
areas such as spin-labelling, spintronics and quantum computing.Comment: 5 pages, 4 figure
Environmental effects on electron spin relaxation in N@C60
We examine environmental effects of surrounding nuclear spins on the electron
spin relaxation of the N@C60 molecule (which consists of a nitrogen atom at the
centre of a fullerene cage). Using dilute solutions of N@C60 in regular and
deuterated toluene, we observe and model the effect of translational diffusion
of nuclear spins of the solvent molecules on the N@C60 electron spin relaxation
times. We also study spin relaxation in frozen solutions of N@C60 in CS2, to
which small quantities of a glassing agent, S2Cl2 are added. At low
temperatures, spin relaxation is caused by spectral diffusion of surrounding
nuclear 35Cl and 37Cl spins in the S2Cl2, but nevertheless, at 20 K, T2 times
as long as 0.23 ms are observed.Comment: 7 pages, 6 figure
A new mechanism for electron spin echo envelope modulation
Electron spin echo envelope modulation (ESEEM) has been observed for the
first time from a coupled hetero-spin pair of electron and nucleus in liquid
solution. Previously, modulation effects in spin echo experiments have only
been described in liquid solutions for a coupled pair of homonuclear spins in
NMR or a pair of resonant electron spins in EPR. We observe low-frequency ESEEM
(26 and 52 kHz) due to a new mechanism present for any electron spin with S>1/2
that is hyperfine coupled to a nuclear spin. In our case these are electron
spin (S=3/2) and nuclear spin (I=1) in the endohedral fullerene N@C60. The
modulation is shown to arise from second order effects in the isotropic
hyperfine coupling of an electron and 14N nucleus.Comment: 15 pages, 4 figure
- …