1,216 research outputs found
On operad structures of moduli spaces and string theory
Recent algebraic structures of string theory, including homotopy Lie
algebras, gravity algebras and Batalin-Vilkovisky algebras, are deduced from
the topology of the moduli spaces of punctured Riemann spheres. The principal
reason for these structures to appear is as simple as the following. A
conformal field theory is an algebra over the operad of punctured Riemann
surfaces, this operad gives rise to certain standard operads governing the
three kinds of algebras, and that yields the structures of such algebras on the
(physical) state space naturally.Comment: 33 pages (An elaboration of minimal area metrics and new references
are added
The 1:1 resonance in Extrasolar Systems: Migration from planetary to satellite orbits
We present families of symmetric and asymmetric periodic orbits at the 1/1
resonance, for a planetary system consisting of a star and two small bodies, in
comparison to the star, moving in the same plane under their mutual
gravitational attraction. The stable 1/1 resonant periodic orbits belong to a
family which has a planetary branch, with the two planets moving in nearly
Keplerian orbits with non zero eccentricities and a satellite branch, where the
gravitational interaction between the two planets dominates the attraction from
the star and the two planets form a close binary which revolves around the
star. The stability regions around periodic orbits along the family are
studied. Next, we study the dynamical evolution in time of a planetary system
with two planets which is initially trapped in a stable 1/1 resonant periodic
motion, when a drag force is included in the system. We prove that if we start
with a 1/1 resonant planetary system with large eccentricities, the system
migrates, due to the drag force, {\it along the family of periodic orbits} and
is finally trapped in a satellite orbit. This, in principle, provides a
mechanism for the generation of a satellite system: we start with a planetary
system and the final stage is a system where the two small bodies form a close
binary whose center of mass revolves around the star.Comment: to appear in Cel.Mech.Dyn.Ast
Duality between Electric and Magnetic Black Holes
A number of attempts have recently been made to extend the conjectured
duality of Yang Mills theory to gravity. Central to these speculations has been
the belief that electrically and magnetically charged black holes, the solitons
of quantum gravity, have identical quantum properties. This is not obvious,
because although duality is a symmetry of the classical equations of motion, it
changes the sign of the Maxwell action. Nevertheless, we show that the chemical
potential and charge projection that one has to introduce for electric but not
magnetic black holes exactly compensate for the difference in action in the
semi-classical approximation. In particular, we show that the pair production
of electric black holes is not a runaway process, as one might think if one
just went by the action of the relevant instanton. We also comment on the
definition of the entropy in cosmological situations, and show that we need to
be more careful when defining the entropy than we are in an asymptotically-flat
case.Comment: 23 pages, revtex, no figures. Major revision: two sections on the
electric Ernst solution adde
On the dynamics of Extrasolar Planetary Systems under dissipation. Migration of planets
We study the dynamics of planetary systems with two planets moving in the
same plane, when frictional forces act on the two planets, in addition to the
gravitational forces. The model of the general three-body problem is used.
Different laws of friction are considered. The topology of the phase space is
essential in understanding the evolution of the system. The topology is
determined by the families of stable and unstable periodic orbits, both
symmetric and non symmetric. It is along the stable families, or close to them,
that the planets migrate when dissipative forces act. At the critical points
where the stability along the family changes, there is a bifurcation of a new
family of stable periodic orbits and the migration process changes route and
follows the new stable family up to large eccentricities or to a chaotic
region. We consider both resonant and non resonant planetary systems. The 2/1,
3/1 and 3/2 resonances are studied. The migration to larger or smaller
eccentricities depends on the particular law of friction. Also, in some cases
the semimajor axes increase and in other cases they are stabilized. For
particular laws of friction and for special values of the parameters of the
frictional forces, it is possible to have partially stationary solutions, where
the eccentricities and the semimajor axes are fixed.Comment: Accepted in Celestial Mechanics and Dynamical Astronom
Low thrust propulsion in a coplanar circular restricted four body problem
This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10􀀀4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model
Relativistic Electromagnetic Mass Models: Charged Dust Distribution in Higher Dimensions
Electromagnetic mass models are proved to exist in higher dimensional theory
of general relativity corresponding to charged dust distribution. Along with
the general proof a specific example is also sited as a supporting candidate.Comment: Latex, 7 pages. Accepted in Astrophysics and Space Scienc
Supergravity Solutions for BI Dyons
We construct partially localized supergravity counterpart solutions to the
1/2 supersymmetric non-threshold and the 1/4 supersymmetric threshold bound
state BI dyons in the D3-brane Dirac-Born-Infeld theory. Such supergravity
solutions have all the parameters of the BI dyons. By applying the IIA/IIB
T-duality transformations to these supergravity solutions, we obtain the
supergravity counterpart solutions to 1/2 and 1/4 supersymmetric BIons carrying
electric and magnetic charges of the worldvolume U(1) gauge field in the
Dirac-Born-Infeld theory in other dimensions.Comment: 17 pages, REVTeX, revised version to appear in Phys. Rev.
Concerning Order and Disorder in the Ensemble of Cu-O Chain Fragments in Oxygen Deficient Planes of Y-Ba-Cu-O
In connection with numerous X-ray and neutron investigations of some high
temperature superconductors (YBaCuO and related compounds) a
non-trivial part of the structure factor, coming from partly disordered
Cu-O--O-Cu chain fragments, situated within basal planes, CuO, can
be a subject of theoretical interest. Closely connected to such a diffusive
part of the structure factor are the correlation lengths, which are also
available in neutron and X-ray diffraction studies and depend on a degree of
oxygen disorder in a basal plane. The quantitative measure of such a disorder
can be associated with temperature of a sample anneal, , at which oxygen
in a basal plane remains frozen-in high temperature equilibrium after a fast
quench of a sample to room or lower temperature. The structure factor evolution
with is vizualized in figures after the numerical calculations. The
theoretical approach employed in the paper has been developed for the
orthorhombic state of YBCO.Comment: Revtex, 27 pages, 14 PostScript figures upon request, ITP/GU/94/0
Supersymmetric Two-Time Physics
We construct an Sp(2,R) gauge invariant particle action which possesses
manifest space-time SO(d,2) symmetry, global supersymmetry and kappa
supersymmetry. The global and local supersymmetries are non-abelian
generalizations of Poincare type supersymmetries and are consistent with the
presence of two timelike dimensions. In particular, this action provides a
unified and explicit superparticle representation of the superconformal groups
OSp(N/4), SU(2,2/N) and OSp(8*/N) which underlie various AdS/CFT dualities in
M/string theory. By making diverse Sp(2,R) gauge choices our action reduces to
diverse one-time physics systems, one of which is the ordinary (one-time)
massless superparticle with superconformal symmetry that we discuss explicitly.
We show how to generalize our approach to the case of superalgebras, such as
OSp(1/32), which do not have direct space-time interpretations in terms of only
zero branes, but may be realizable in the presence of p-branes.Comment: Latex, 18 page
Baryon Binding Energy in Sakai-Sugimoto Model
The binding energy of baryon has been studied in the dual
string theory with a black hole interior. In this picture baryon is constructed
of a brane vertex wrapping on and fundamental strings
connected to it. Here, we calculate the baryon binding energy in Sakai-Sugimoto
model with a in which the supersymmetry is completely
broken. Also we check the dependence of the baryon binding energy. We
believe that this model represents an accurate description of baryons due to
the existence of Chern-Simones coupling with the gauge field on the brane. We
obtain an analytical expression for the baryon binding energy . In that case we
plot the baryon binding energy in terms of radial coordinate. Then by using the
binding energy diagram, we determine the stability range for baryon
configuration. And also the position and energy of the stable equilibrium point
is obtained by the corresponding diagram. Also we plot the baryon binding
energy in terms of temperature and estimate a critical temperature in which the
baryon would be dissociated.Comment: 14 pages, 1 fi
- âŠ