20,130 research outputs found
Phase analysis of the cosmic microwave background from an incomplete sky coverage
Phases of the spherical harmonic analysis of full-sky cosmic microwave
background (CMB) temperature data contain useful information complementary to
the ubiquitous angular power spectrum. In this letter we present a new method
of phase analysis on incomplete sky maps. It is based on Fourier phases of
equal-latitude pixel rings of the map, which are related to the mean angle of
the trigonometric moments from the full-sky phases. They have an advantage for
probing regions of interest without tapping polluted Galactic plane area, and
can localize non-Gaussian features and departure from statistical isotropy in
the CMB.Comment: 5 pages, 3 figures submitted to MNRAS Letters, replaced with minor
change
Quantum Thetas on Noncommutative T^4 from Embeddings into Lattice
In this paper we investigate the theta vector and quantum theta function over
noncommutative T^4 from the embedding of R x Z^2. Manin has constructed the
quantum theta functions from the lattice embedding into vector space (x finite
group). We extend Manin's construction of the quantum theta function to the
embedding of vector space x lattice case. We find that the holomorphic theta
vector exists only over the vector space part of the embedding, and over the
lattice part we can only impose the condition for Schwartz function. The
quantum theta function built on this partial theta vector satisfies the
requirement of the quantum theta function. However, two subsequent quantum
translations from the embedding into the lattice part are non-additive,
contrary to the additivity of those from the vector space part.Comment: 20 pages, LaTeX, version to appear in J. Phys.
Theta Vectors and Quantum Theta Functions
In this paper, we clarify the relation between Manin's quantum theta function
and Schwarz's theta vector in comparison with the kq representation, which is
equivalent to the classical theta function, and the corresponding coordinate
space wavefunction. We first explain the equivalence relation between the
classical theta function and the kq representation in which the translation
operators of the phase space are commuting. When the translation operators of
the phase space are not commuting, then the kq representation is no more
meaningful. We explain why Manin's quantum theta function obtained via algebra
(quantum tori) valued inner product of the theta vector is a natural choice for
quantum version of the classical theta function (kq representation). We then
show that this approach holds for a more general theta vector with constant
obtained from a holomorphic connection of constant curvature than the simple
Gaussian one used in the Manin's construction. We further discuss the
properties of the theta vector and of the quantum theta function, both of which
have similar symmetry properties under translation.Comment: LaTeX 21 pages, give more explicit explanations for notions given in
the tex
Polarizations and Nullcone of Representations of Reductive Groups
The paper starts with the following simple observation. Let V be a representation of a reductive group G, and let f_1,f_2,...,f_n be homogeneous invariant functions. Then the polarizations of f_1,f_2,...,f_n define the nullcone of k 0} h(t) x = 0 for all x in L. This is then applied to many examples. A surprising result is about the group SL(2,C) where almost all representations V have the property that all linear subspaces of the nullcone are annihilated. Again, this has interesting applications to the invariants on several copies. Another result concerns the n-qubits which appear in quantum computing. This is the representation of a product of n copies of on the n-fold tensor product C^2 otimes C^2 otimes ... otimes C^2. Here we show just the opposite, namely that the polarizations never define the nullcone of several copies if n <= 3. (An earlier version of this paper, distributed in 2002, was split into two parts; the first part with the title ``On the nullcone of representations of reductive groups'' is published in Pacific J. Math. {bf 224} (2006), 119--140.
BPS mass spectrum from D-brane action
We derive the BPS mass formulae of the Dirichlet branes from the Born-Infeld
type action. BPS saturation is realized when the brane has the minimal volume
while keeping the appropriate winding numbers. We apply the idea to two cases,
type IIA superstring compactified on and . The result is consistent
with the string duality, and the expected spectrum for the BPS states is
reproduced.Comment: 11 pages, latex, no figur
A supergeometric approach to Poisson reduction
This work introduces a unified approach to the reduction of Poisson manifolds
using their description by graded symplectic manifolds. This yields a
generalization of the classical Poisson reduction by distributions
(Marsden-Ratiu reduction). Further it allows one to construct actions of strict
Lie 2-groups and to describe the corresponding reductions.Comment: 40 pages. Final version accepted for publicatio
- …