3,241 research outputs found

    Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model

    Get PDF
    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied.Comment: Revtex, 32 pages, 11 PDF figures, to appear in Biophysical Journa

    Unifying autocatalytic and zeroth order branching models for growing actin networks

    Full text link
    The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament number. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate, above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, this allows cells to grow stable actin networks over a large range of different conditions.Comment: revtex, 5 pages, 4 figure

    Role of anisotropy for protein-protein encounter

    Full text link
    Protein-protein interactions comprise both transport and reaction steps. During the transport step, anisotropy of proteins and their complexes is important both for hydrodynamic diffusion and accessibility of the binding site. Using a Brownian dynamics approach and extensive computer simulations, we quantify the effect of anisotropy on the encounter rate of ellipsoidal particles covered with spherical encounter patches. We show that the encounter rate kk depends on the aspect ratios ξ\xi mainly through steric effects, while anisotropic diffusion has only a little effect. Calculating analytically the crossover times from anisotropic to isotropic diffusion in three dimensions, we find that they are much smaller than typical protein encounter times, in agreement with our numerical results.Comment: 4 pages, Revtex with 3 figures, to appear as a Rapid Communication in Physical Review

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include
    • …
    corecore