53 research outputs found

    Line Ratios Reveal N2H+ Emission Originates Above the Midplane in TW Hydrae

    Get PDF
    Line ratios for different transitions of the same molecule have long been used as a probe of gas temperature. Here we use ALMA observations of the N2H+ J~=~1-0 and J~=~4-3 lines in the protoplanetary disk around TW Hya to derive the temperature at which these lines emit. We find an averaged temperature of 39~K with a one sigma uncertainty of 2~K for the radial range 0.8-2'', significantly warmer than the expected midplane temperature beyond 0.5'' in this disk. We conclude that the N2H+ emission in TW Hya is not emitting from near the midplane, but rather from higher in the disk, in a region likely bounded by processes such as photodissociation or chemical reprocessing of CO and N2 rather than freeze out.Comment: Accepted for publication in ApJ Letters, 5 pages, 1 figur

    Mass inventory of the giant-planet formation zone in a solar nebula analog

    Get PDF
    The initial mass distribution in the solar nebula is a critical input to planet formation models that seek to reproduce today's Solar System. Traditionally, constraints on the gas mass distribution are derived from observations of the dust emission from disks, but this approach suffers from large uncertainties in grain growth and gas-to-dust ratio. On the other hand, previous observations of gas tracers only probe surface layers above the bulk mass reservoir. Here we present the first partially spatially resolved observations of the 13^{13}C18^{18}O J=3-2 line emission in the closest protoplanetary disk, TW Hya, a gas tracer that probes the bulk mass distribution. Combining it with the C18^{18}O J=3-2 emission and the previously detected HD J=1-0 flux, we directly constrain the mid-plane temperature and optical depths of gas and dust emission. We report a gas mass distribution of 13−5+8×^{+8}_{-5}\times(R/20.5AU)−0.9−0.3+0.4^{-0.9^{+0.4}_{-0.3}} g cm−2^{-2} in the expected formation zone of gas and ice giants (5-21AU). We find the total gas/millimeter-sized dust mass ratio is 140 in this region, suggesting that at least 2.4M_earth of dust aggregates have grown to >centimeter sizes (and perhaps much larger). The radial distribution of gas mass is consistent with a self-similar viscous disk profile but much flatter than the posterior extrapolation of mass distribution in our own and extrasolar planetary systems.Comment: Definitive version of the manuscript is published in Nature Astronomy, 10.1038/s41550-017-0130. This is the authors' versio

    Unlocking CO Depletion in Protoplanetary Disks II. Primordial C/H Predictions Inside the CO Snowline

    Get PDF
    CO is thought to be the main reservoir of volatile carbon in protoplanetary disks, and thus the primary initial source of carbon in the atmospheres of forming giant planets. However, recent observations of protoplanetary disks point towards low volatile carbon abundances in many systems, including at radii interior to the CO snowline. One potential explanation is that gas phase carbon is chemically reprocessed into less volatile species, which are frozen on dust grain surfaces as ice. This mechanism has the potential to change the primordial C/H ratio in the gas. However, current observations primarily probe the upper layers of the disk. It is not clear if the low volatile carbon abundances extend to the midplane, where planets form. We have run a grid of 198 chemical models, exploring how the chemical reprocessing of CO depends on disk mass, dust grain size distribution, temperature, cosmic ray and X-ray ionization rate, and initial water abundance. Building on our previous work focusing on the warm molecular layer, here we analyze the results for our grid of models in the disk midplane at 12 au. We find that either an ISM level cosmic ray ionization rate or the presence of UV photons due to a low dust surface density are needed to chemically reduce the midplane CO gas abundance by at least an order of magnitude within 1 Myr. In the majority of our models CO does not undergo substantial reprocessing by in situ chemistry and there is little change in the gas phase C/H and C/O ratios over the lifetime of the typical disk. However, in the small sub-set of disks where the disk midplane is subject to a source of ionization or photolysis, the gas phase C/O ratio increases by up to nearly 9 orders of magnitude due to conversion of CO into volatile hydrocarbons.Comment: Accepted for publication in ApJ, 15 pages, 10 figures, 3 table

    Systematic Variations of CO Gas Abundance with Radius in Gas-rich Protoplanetary Disks

    Full text link
    CO is the most widely used gas tracer of protoplanetary disks. Its abundance is usually assumed to be an interstellar ratio throughout the warm molecular layer of the disk. But recent observations of low CO gas abundance in many protoplanetary disks challenge our understanding of physical and chemical evolutions in disks. Here we investigate the CO abundance structures in four well-studied disks and compare their structures with predictions of chemical processing of CO and transport of CO ice-coated dust grains in disks. We use spatially resolved CO isotopologue line observations and detailed thermo-chemical models to derive CO abundance structures. We find that the CO abundance varies with radius by an order of magnitude in these disks. We show that although chemical processes can efficiently reduce the total column of CO gas within 1 Myr under an ISM level of cosmic-ray ionization rate, the depletion mostly occurs at the deep region of a disk. Without sufficient vertical mixing, the surface layer is not depleted enough to reproduce weak CO emissions observed. The radial profiles of CO depletion in three disks are qualitatively consistent with predictions of pebble formation, settling, and drifting in disks. But the dust evolution alone cannot fully explain the high depletion observed in some disks. These results suggest that dust evolution may play a significant role in transporting volatile materials and a coupled chemical-dynamical study is necessary to understand what raw materials are available for planet formation at different distances from the central star.Comment: 17 pages, 8 figures, accepted for publication in the Ap

    CO Depletion in Protoplanetary Disks: A Unified Picture Combining Physical Sequestration and Chemical Processing

    Full text link
    The gas-phase CO abundance (relative to hydrogen) in protoplanetary disks decreases by up to 2 orders of magnitude from its ISM value ∼10−4{\sim}10^{-4}, even after accounting for freeze-out and photo-dissociation. Previous studies have shown that while local chemical processing of CO and the sequestration of CO ice on solids in the midplane can both contribute, neither of these processes appears capable of consistently reaching the observed depletion factors on the relevant timescale of 1−3 Myr1{-}3\mathrm{~Myr}. In this study, we model these processes simultaneously by including a compact chemical network (centered on carbon and oxygen) to 2D (r+zr+z) simulations of the outer (r>20 aur>20\mathrm{~au}) disk regions that include turbulent diffusion, pebble formation, and pebble dynamics. In general, we find that the CO/H2_2 abundance is a complex function of time and location. Focusing on CO in the warm molecular layer, we find that only the most complete model (with chemistry and pebble evolution included) can reach depletion factors consistent with observations. In the absence of pressure traps, highly-efficient planetesimal formation, or high cosmic ray ionization rates, this model also predicts a resurgence of CO vapor interior to the CO snowline. We show the impact of physical and chemical processes on the elemental (C/O) and (C/H) ratios (in the gas and ice phases), discuss the use of CO as a disk mass tracer, and, finally, connect our predicted pebble ice compositions to those of pristine planetesimals as found in the Cold Classical Kuiper Belt and debris disks.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore