1,972 research outputs found
A medieval fallacy: the crystalline lens in the center of the eye.
ObjectiveTo determine whether, as most modern historians have written, ancient Greco-Roman authors believed the crystalline lens is positioned in the center of the eye.BackgroundHistorians have written that statements about cataract couching by Celsus, or perhaps Galen of Pergamon, suggested a centrally located lens. Celsus specifically wrote that a couching needle placed intermediate between the corneal limbus and the lateral canthus enters an empty space, presumed to represent the posterior chamber.MethodsAncient ophthalmic literature was analyzed to understand where these authors believed the crystalline lens was positioned. In order to estimate where Celsus proposed entering the eye during couching, we prospectively measured the distance from the temporal corneal limbus to the lateral canthus in 30 healthy adults.ResultsRufus of Ephesus and Galen wrote that the lens is anterior enough to contact the iris. Galen wrote that the lens equator joins other ocular structures at the corneoscleral junction. In 30 subjects, half the distance from the temporal corneal limbus to the lateral canthus was a mean of 4.5 mm (range: 3.3-5.3 mm). Descriptions of couching by Celsus and others are consistent with pars plana entry of the couching needle. Anterior angulation of the needle would permit contact of the needle with the lens.ConclusionAncient descriptions of anatomy and couching do not establish the microanatomic relationships of the ciliary region with any modern degree of accuracy. Nonetheless, ancient authors, such as Galen and Rufus, clearly understood that the lens is located anteriorly. There is little reason to believe that Celsus or other ancient authors held a variant understanding of the anatomy of a healthy eye. The notion of the central location of the lens seems to have arisen with Arabic authors in 9th century Mesopotamia, and lasted for over 7 centuries
Space program: Space debris a potential threat to Space Station and shuttle
Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed
On combining triads and unrelated subjects data in candidate gene studies: an application to data on testicular cancer.
Combining data collected from different sources is a cost-effective and time-efficient approach for enhancing the statistical efficiency in estimating weak-to-modest genetic effects or gene-gene or gene-environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family-based and unrelated individual-based (e.g., population-based case-control design). In this paper, we describe a general method that permits the joint estimation of effects on disease risk of genes, environmental factors, and gene-gene/gene-environment interactions under a hybrid design that includes cases, parents of cases, and unrelated individuals. We provide both asymptotic theory and statistical inference. Extensive simulation experiments demonstrate that the proposed estimation and inferential methods perform well in realistic settings. We illustrate the method by an application to a study of testicular cancer
The early history of glaucoma: the glaucous eye (800 BC to 1050 AD)
To the ancient Greeks, glaukos occasionally described diseased eyes, but more typically described healthy irides, which were glaucous (light blue, gray, or green). During the Hippocratic period, a pathologic glaukos pupil indicated a media opacity that was not dark. Although not emphasized by present-day ophthalmologists, the pupil in acute angle closure may appear somewhat green, as the mid-dilated pupil exposes the cataractous lens. The ancient Greeks would probably have described a (normal) green iris or (diseased) green pupil as glaukos. During the early Common Era, eye pain, a glaucous hue, pupil irregularities, and absence of light perception indicated a poor prognosis with couching. Galen associated the glaucous hue with a large, anterior, or hard crystalline lens. Medieval Arabic authors translated glaukos as zarqaa, which also commonly described light irides. Ibn Sina (otherwise known as Avicenna) wrote that the zarqaa hue could occur due to anterior prominence of the lens and could occur in an acquired manner. The disease defined by the glaucous pupil in antiquity is ultimately indeterminate, as the complete syndrome of acute angle closure was not described. Nonetheless, it is intriguing that the glaucous pupil connoted a poor prognosis, and came to be associated with a large, anterior, or hard crystalline lens
An intellectual disability syndrome with single nucleotide variants in <i>O-GlcNAc Transferase</i>
Contains fulltext :
220584.pdf (Publisher’s version ) (Open Access)Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with β-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions
What was Glaucoma Called Before the 20th Century?
Glaucoma involves a characteristic optic neuropathy, often with elevated intraocular pressure. Before 1850, poor vision with a normal eye appearance, as occurs in primary open-angle glaucoma, was termed amaurosis, gutta serena, or black cataract. Few observers noted palpable hardness of the eye in amaurosis. On the other hand, angle-closure glaucoma can produce a green or gray pupil, and therefore was called, variously, glaucoma (derived from the Greek for glaucous, a nonspecific term connoting blue, green, or light gray) and viriditate oculi. Angle closure, with palpable hardness of the eye, mydriasis, and anterior prominence of the lens, was described in greater detail in the 18th and 19th centuries. The introduction of the ophthalmoscope in 1850 permitted the visualization of the excavated optic neuropathy in eyes with a normal or with a dilated greenish-gray pupil. Physicians developed a better appreciation of the role of intraocular pressure in both conditions, which became subsumed under the rubric “glaucoma”
Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model
As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA)
mission, the near-Earth binary asteroid 65803 Didymos represents a special
class of binary asteroids, those whose primaries are at risk of rotational
disruption. To gain a better understanding of these binary systems and to
support the AIDA mission, this paper investigates the creep stability of the
Didymos primary by representing it as a cohesionless self-gravitating granular
aggregate subject to rotational acceleration. To achieve this goal, a
soft-sphere discrete element model (SSDEM) capable of simulating granular
systems in quasi-static states is implemented and a quasi-static spin-up
procedure is carried out. We devise three critical spin limits for the
simulated aggregates to indicate their critical states triggered by reshaping
and surface shedding, internal structural deformation, and shear failure,
respectively. The failure condition and mode, and shear strength of an
aggregate can all be inferred from the three critical spin limits. The effects
of arrangement and size distribution of constituent particles, bulk density,
spin-up path, and interparticle friction are numerically explored. The results
show that the shear strength of a spinning self-gravitating aggregate depends
strongly on both its internal configuration and material parameters, while its
failure mode and mechanism are mainly affected by its internal configuration.
Additionally, this study provides some constraints on the possible physical
properties of the Didymos primary based on observational data and proposes a
plausible formation mechanism for this binary system. With a bulk density
consistent with observational uncertainty and close to the maximum density
allowed for the asteroid, the Didymos primary in certain configurations can
remain geo-statically stable without including cohesion.Comment: 66 pages, 24 figures, submitted to Icarus on 25/Aug/201
Minimally invasive mitral valve replacement: Port-access technique, feasibility, and myocardial functional preservation
AbstractObjective: This experiment examined the feasibility of minimally invasive port-access mitral valve replacement via a 2.5 cm incision. Methods: The study evaluated valvular performance and myocardial functional recovery in six mongrel dogs after port-access mitral valve replacement with a St. Jude Medical prosthesis (St. Jude Medical, Inc., St. Paul, Minn.). Femoro-femoral cardiopulmonary bypass and a balloon catheter system for myocardial protection with cardioplegic arrest (Heartport, Inc., Redwood City, Calif.) were used. The mitral valve was replaced through a 2.5 cm port in the left side of the chest, and the animals were weaned from bypass. Cardiac function was measured before and at 30 and 60 minutes after bypass. Left ventricular pressure and electrical conductance volume were used to calculate changes in load-independent indexes of ventricular function. Results: Each procedure was successfully completed. Recovery of left ventricular function was excellent at 30 and 60 minutes after bypass compared with the prebypass values for elastance (30 minutes = 4.04 ± 0.97 and 60 minutes = 4.27 ± 0.57 vs prebypass = 4.45 ± 0.96; p = 0.51) and for preload recruitable stroke work (30 minutes = 76.23 ± 4.80 and 60 minutes = 71.21 ± 2.99 vs prebypass = 71.23 ± 3.75; p = 0.45). Preload recruitable work area remained at 96% and 85% of baseline at 30 and 60 minutes (p = not significant). In addition, transesophageal echocardiography demonstrated normal prosthetic valve function, as well as normal regional and global ventricular wall motion. Autopsy revealed secure annular-sewing apposition and normal leaflet motion. Conclusions: These results suggest that minimally invasive mitral valve replacement using percutaneous cardiopulmonary bypass with cardioplegic arrest is technically reproducible, achieves normal valve placement, and results in complete cardiac functional recovery. Minimally invasive mitral valve replacement is now feasible, and clinical trials are indicated. (J Thorac Cardiovasc Surg 1997; 113:1022-31
Survival following parathyroidectomy among United States dialysis patients
Survival following parathyroidectomy among United States dialysis patients.BackgroundSecondary hyperparathyroidism (SHPTH) is highly prevalent among persons with end-stage renal disease (ESRD). SHPTH has been linked to uremic bone disease, vascular calcification, and a higher risk of death. Parathyroidectomy (PTX) can dramatically reduce parathyroid hormone (PTH) and phosphate levels; however, the relationship between PTX and survival is not known.MethodsWe conducted an observational matched cohort study utilizing data from the United States Renal Database System (USRDS) in which 4558 patients undergoing a first PTX while on hemodialysis or peritoneal dialysis were individually matched by age, race, gender, cause of ESRD, dialysis duration, prior transplantation status, and dialysis modality to 4558 control patients who did not undergo PTX. Patients were followed from the date of PTX until they died or were lost to follow-up.ResultsThe 30-day postoperative mortality rate following PTX was 3.1%. Long-term relative risks of death among patients undergoing PTX were estimated to be 10% to 15% lower than those of matched control patients not undergoing surgery. Survival curves between the 2 groups crossed 587 days following PTX. Median survival was 53.4 months (95% CI: 51.2–56.4) in the PTX group, and 46.8 months (95% CI: 44.7–48.9) in the control group.ConclusionPTX was associated with higher short-term, and lower long-term, mortality rates among U.S. patients receiving chronic dialysis. Measures to attenuate SHPTH may play an important role in reducing mortality among patients with end-stage renal disease
Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact
Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA
Double Asteroid Redirection Test (DART), part of the Asteroid Impact &
Deflection Assessment (AIDA) mission concept. In this mission, the DART
spacecraft is planned to impact the secondary body of Didymos, perturbing
mutual dynamics of the system. The primary body is currently rotating at a spin
period close to the spin barrier of asteroids, and materials ejected from the
secondary due to the DART impact are likely to reach the primary. These
conditions may cause the primary to reshape, due to landslides, or internal
deformation, changing the permanent gravity field. Here, we propose that if
shape deformation of the primary occurs, the mutual orbit of the system would
be perturbed due to a change in the gravity field. We use a numerical
simulation technique based on the full two-body problem to investigate the
shape effect on the mutual dynamics in Didymos after the DART impact. The
results show that under constant volume, shape deformation induces strong
perturbation in the mutual motion. We find that the deformation process always
causes the orbital period of the system to become shorter. If surface layers
with a thickness greater than ~0.4 m on the poles of the primary move down to
the equatorial region due to the DART impact, a change in the orbital period of
the system and in the spin period of the primary will be detected by
ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA
- …