32,100 research outputs found
The nature of the long time decay at a second order transition point
We show that at a second order phase transition, of \phi^4 like system, a
necessary condition for streched exponential decay of the time structure factor
is obeyed. Using the ideas presented in this proof a crude estimate of the
decay of the structure factor is obtained and shown to yield stretched
exponential decay under very reasonable conditions.Comment: 7 page
Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond
Exposure to beams of low energy electrons (2 to 30 keV) in a scanning
electron microscope locally induces formation of NV-centers without thermal
annealing in diamonds that have been implanted with nitrogen ions. We find that
non-thermal, electron beam induced NV-formation is about four times less
efficient than thermal annealing. But NV-center formation in a consecutive
thermal annealing step (800C) following exposure to low energy electrons
increases by a factor of up to 1.8 compared to thermal annealing alone. These
observations point to reconstruction of nitrogen-vacancy complexes induced by
electronic excitations from low energy electrons as an NV-center formation
mechanism and identify local electronic excitations as a means for spatially
controlled room-temperature NV-center formation
Sneutrino as Lightest Supersymmetric Particle in B3 mSUGRA Models and Signals at the LHC
We consider B3 mSUGRA models where we have one lepton number violating LQD
operator at the GUT scale. This can alter the supersymmetric mass spectrum
leading to a sneutrino as the lightest supersymmetric particle in a large
region of parameter space. We take into account the restrictions from neutrino
masses, the muon anomalous magnetic moment, b -> s gamma and other precision
measurements. We furthermore investigate existing restrictions from direct
searches at LEP, the Tevatron and the CERN p\bar p collider. We then give
examples for characteristic signatures at the LHC.Comment: 22 pages, 11 figure
High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry
We present a high-order spatial discretization of a continuum gyrokinetic
Vlasov model in axisymmetric tokamak edge plasma geometries. Such models
describe the phase space advection of plasma species distribution functions in
the absence of collisions. The gyrokinetic model is posed in a four-dimensional
phase space, upon which a grid is imposed when discretized. To mitigate the
computational cost associated with high-dimensional grids, we employ a
high-order discretization to reduce the grid size needed to achieve a given
level of accuracy relative to lower-order methods. Strong anisotropy induced by
the magnetic field motivates the use of mapped coordinate grids aligned with
magnetic flux surfaces. The natural partitioning of the edge geometry by the
separatrix between the closed and open field line regions leads to the
consideration of multiple mapped blocks, in what is known as a mapped
multiblock (MMB) approach. We describe the specialization of a more general
formalism that we have developed for the construction of high-order,
finite-volume discretizations on MMB grids, yielding the accurate evaluation of
the gyrokinetic Vlasov operator, the metric factors resulting from the MMB
coordinate mappings, and the interaction of blocks at adjacent boundaries. Our
conservative formulation of the gyrokinetic Vlasov model incorporates the fact
that the phase space velocity has zero divergence, which must be preserved
discretely to avoid truncation error accumulation. We describe an approach for
the discrete evaluation of the gyrokinetic phase space velocity that preserves
the divergence-free property to machine precision
An interval logic for higher-level temporal reasoning
Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included
End to end distance on contour loops of random gaussian surfaces
A self consistent field theory that describes a part of a contour loop of a
random Gaussian surface as a trajectory interacting with itself is constructed.
The exponent \nu characterizing the end to end distance is obtained by a Flory
argument. The result is compared with different previuos derivations and is
found to agree with that of Kondev and Henley over most of the range of the
roughening exponent of the random surface.Comment: 7 page
- …