32,100 research outputs found

    The nature of the long time decay at a second order transition point

    Full text link
    We show that at a second order phase transition, of \phi^4 like system, a necessary condition for streched exponential decay of the time structure factor is obeyed. Using the ideas presented in this proof a crude estimate of the decay of the structure factor is obtained and shown to yield stretched exponential decay under very reasonable conditions.Comment: 7 page

    Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond

    Full text link
    Exposure to beams of low energy electrons (2 to 30 keV) in a scanning electron microscope locally induces formation of NV-centers without thermal annealing in diamonds that have been implanted with nitrogen ions. We find that non-thermal, electron beam induced NV-formation is about four times less efficient than thermal annealing. But NV-center formation in a consecutive thermal annealing step (800C) following exposure to low energy electrons increases by a factor of up to 1.8 compared to thermal annealing alone. These observations point to reconstruction of nitrogen-vacancy complexes induced by electronic excitations from low energy electrons as an NV-center formation mechanism and identify local electronic excitations as a means for spatially controlled room-temperature NV-center formation

    The Soviet Economy since Stalin

    Get PDF

    Sneutrino as Lightest Supersymmetric Particle in B3 mSUGRA Models and Signals at the LHC

    Full text link
    We consider B3 mSUGRA models where we have one lepton number violating LQD operator at the GUT scale. This can alter the supersymmetric mass spectrum leading to a sneutrino as the lightest supersymmetric particle in a large region of parameter space. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b -> s gamma and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron and the CERN p\bar p collider. We then give examples for characteristic signatures at the LHC.Comment: 22 pages, 11 figure

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    An interval logic for higher-level temporal reasoning

    Get PDF
    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included

    End to end distance on contour loops of random gaussian surfaces

    Full text link
    A self consistent field theory that describes a part of a contour loop of a random Gaussian surface as a trajectory interacting with itself is constructed. The exponent \nu characterizing the end to end distance is obtained by a Flory argument. The result is compared with different previuos derivations and is found to agree with that of Kondev and Henley over most of the range of the roughening exponent of the random surface.Comment: 7 page
    • …
    corecore