333 research outputs found
TIPS AND TRICKS FOR CHARACTERIZING SHAPE MEMORY ALLOY WIRE: PART 1—DIFFERENTIAL SCANNING CALORIMETRY AND BASIC PHENOMENA
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73961/1/j.1747-1567.2008.00410.x.pd
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
Smoothing and Matching of 3-D Space Curves
International audienceWe present a new approach to the problem of matching 3-D curves. The approach has a low algorithmic complexity in the number of models, and can operate in the presence of noise and partial occlusions. Our method builds upon the seminal work of Kishon et al. (1990), where curves are first smoothed using B-splines, with matching based on hashing using curvature and torsion measures. However, we introduce two enhancements: -- We make use of nonuniform B-spline approximations, which permits us to better retain information at highcurvature locations. The spline approximations are controlled (i.e., regularized) by making use of normal vectors to the surface in 3-D on which the curves lie, and by an explicit minimization of a bending energy. These measures allow a more accurate estimation of position, curvature, torsion, and Frtnet frames along the curve. -- The computational complexity of the recognition process is relatively independent of the number of models and is considerably decreased with explicit use of the Frtnet frame for hypotheses generation. As opposed to previous approaches, the method better copes with partial occlusion. Moreover, following a statistical study of the curvature and torsion covariances, we optimize the hash table discretization and discover improved invariants for recognition, different than the torsion measure. Finally, knowledge of invariant uncertainties is used to compute an optimal global transformation using an extended Kalman filter. We present experimental results using synthetic data and also using characteristic curves extracted from 3-D medical images. An earlier version of this article was presented at the 2nd European Conference on Computer Vision in Italy
Flowcharts for the management of biliary tract and ampullary carcinomas
No strategies for the diagnosis and treatment of biliary tract carcinoma have been clearly described. We developed flowcharts for the diagnosis and treatment of biliary tract carcinoma on the basis of the best clinical evidence. Risk factors for bile duct carcinoma are a dilated type of pancreaticobiliary maljunction (PBM) and primary sclerosing cholangitis. A nondilated type of PBM is a risk factor for gallbladder carcinoma. Symptoms that may indicate biliary tract carcinoma are jaundice and pain in the upper right area of the abdomen. The first step of diagnosis is to carry out blood biochemistry tests and ultrasonography (US) of the abdomen. The second step of diagnosis is to find the local extension of the carcinoma by means of computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), percutaneous transhepatic cholangiography (PTC), and endoscopic retrograde cholangiopancreatography (ERCP). Because resection is the only way to completely cure biliary tract carcinoma, the indications for resection are determined first. In patients with resectable disease, the indications for biliary drainage or portal vein embolization (PVE) are checked. In those with nonresectable disease, biliary stenting, chemotherapy, radiotherapy, and/or best supportive care is selected
Landscape of mutations in early stage primary cutaneous melanoma: An InterMEL study
It is unclear why some melanomas aggressively metastasize while others remain indolent. Available studies employing multi-omic profiling of melanomas are based on large primary or metastatic tumors. We examine the genomic landscape of early-stage melanomas diagnosed prior to the modern era of immunological treatments. Untreated cases with Stage II/III cutaneous melanoma were identified from institutions throughout the United States, Australia and Spain. FFPE tumor sections were profiled for mutation, methylation and microRNAs. Preliminary results from mutation profiling and clinical pathologic correlates show the distribution of four driver mutation sub-types: 31% BRAF; 18% NRAS; 21% NF1; 26% Triple Wild Type. BRAF mutant tumors had younger age at diagnosis, more associated nevi, more tumor infiltrating lymphocytes, and fewer thick tumors although at generally more advanced stage. NF1 mutant tumors were frequent on the head/neck in older patients with severe solar elastosis, thicker tumors but in earlier stages. Triple Wild Type tumors were predominantly male, frequently on the leg, with more perineural invasion. Mutations in TERT, TP53, CDKN2A and ARID2 were observed often, with TP53 mutations occurring particularly frequently in the NF1 sub-type. The InterMEL study will provide the most extensive multi-omic profiling of early-stage melanoma to date. Initial results demonstrate a nuanced understanding of the mutational and clinicopathological landscape of these early-stage tumors
- …