765 research outputs found
Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy
We recently engineered encodable lanthanide binding tags (LBTs) into proteins and demonstrated their applicability in Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography and luminescence studies. Here, we engineered two-loop-LBTs into the model protein interleukin-1ÎČ (IL1ÎČ) and measured [superscript 1]H, [superscript 15]N-pseudocontact shifts (PCSs) by NMR spectroscopy. We determined the ÎÏ-tensors associated with each Tm[superscript 3+]-loaded loop-LBT and show that the experimental PCSs yield structural information at the interface between the two metal ion centers at atomic resolution. Such information is very valuable for the determination of the sites of interfaces in proteinâprotein-complexes. Combining the experimental PCSs of the two-loop-LBT construct IL1ÎČ-S2R2 and the respective single-loop-LBT constructs IL1ÎČ-S2, IL1ÎČ-R2 we additionally determined the distance between the metal ion centers. Further, we explore the use of two-loop LBTs loaded with Gd[superscript 3+] as a novel tool for distance determination by Electron Paramagnetic Resonance spectroscopy and show the NMR-derived distances to be remarkably consistent with distances derived from Pulsed ElectronâElectron Dipolar Resonance.German Science Foundation (collaborative research centers 807 and 902)National Science Foundation (U.S.) (Grant MCB 0744415
Bone Proteomics Method Optimization for Forensic Investigations
\ua9 2024 The Authors. Published by American Chemical Society.The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. This study also compared data-dependent acquisition (DDA) with data-independent acquisition (DIA). By testing all of the workflows on 30 human cortical tibiae samples, S-Trap workflows resulted in increased proteome recovery with both lysis solutions tested and in decreased levels of induced deamidations, and the DIA mode resulted in greater sensitivity and window of identification for the identification of lower-abundance proteins, especially when open-source software was utilized for data processing in both modes. The newly developed S-Trap protocol is, therefore, suitable for forensic bone proteomic workflows and, particularly when paired with DIA mode, can offer improved proteomic outcomes and increased reproducibility, showcasing its potential in forensic proteomics and contributing to achieving standardization in bone proteomic analyses for forensic applications
Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games
Probabilistic model checking for stochastic games enables formal verification
of systems that comprise competing or collaborating entities operating in a
stochastic environment. Despite good progress in the area, existing approaches
focus on zero-sum goals and cannot reason about scenarios where entities are
endowed with different objectives. In this paper, we propose probabilistic
model checking techniques for concurrent stochastic games based on Nash
equilibria. We extend the temporal logic rPATL (probabilistic alternating-time
temporal logic with rewards) to allow reasoning about players with distinct
quantitative goals, which capture either the probability of an event occurring
or a reward measure. We present algorithms to synthesise strategies that are
subgame perfect social welfare optimal Nash equilibria, i.e., where there is no
incentive for any players to unilaterally change their strategy in any state of
the game, whilst the combined probabilities or rewards are maximised. We
implement our techniques in the PRISM-games tool and apply them to several case
studies, including network protocols and robot navigation, showing the benefits
compared to existing approaches
NMR quality control of fragment libraries for screening
Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process
Quasi Harmonic Lattice Dynamics and Molecular Dynamics calculations for the Lennard-Jones solids
We present Molecular Dynamics (MD), Quasi Harmonic Lattice Dynamics (QHLD)
and Energy Minimization (EM) calculations for the crystal structure of Ne, Ar,
Kr and Xe as a function of pressure and temperature. New Lennard-Jones (LJ)
parameters are obtained for Ne, Kr and Xe to reproduce the experimental
pressure dependence of the density. We employ a simple method which combines
results of QHLD and MD calculations to achieve densities in good agreement with
experiment from 0 K to melting. Melting is discussed in connection with
intrinsic instability of the solid as given by the QHLD approximation. (See
http://www.fci.unibo.it/~valle for related papers)Comment: 7 pages, 5 figures, REVte
13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides
We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4âČ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1âČ,H1âČ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs
Equilibria-based probabilistic model checking for concurrent stochastic games
Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches
Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse
BACKGROUND: 90% of tumors) and established genetic drivers (e.g. SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (e.g. DNA damage-signaling) and specific events (e.g. 3p loss) predicted survival post-relapse. CONCLUSIONS: rMB is defined by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course
Highly fluorinated naphthalenes and bifurcated CâHâŻFâC hydrogen bonding
The synthesis and crystal structures of 1,2,4,5,6,8-hexafluoronaphthalene and 1,2,4,6,8-pentafluoronaphthalene are reported. Intermolecular interactions are dominated by offset stacking and by CâHâŻFâC hydrogen bonds. For hexafluoronaphthalene, molecules are linked in layers with (4,4) network topology via R12(6) CâHâŻ(FâC)2 supramolecular synthons that are rationalised by consideration of the calculated electrostatic potential of the molecule. Such an arrangement is prevented by the additional hydrogen atom in pentafluoronaphthalene and molecules instead form tapes via an R12(8) (CâHâŻF)2 synthon. The geometric characteristics of CâHâŻ(FâC)2 bifurcated hydrogen bonds have been analysed for crystal structures in the Cambridge Structural Database (6416 crystal structures; 9534 CâHâŻ(FâC)2 bifurcated hydrogen bonds). A geometric analysis of these hydrogen bonds has enabled the extent of asymmetry of these hydrogen bonds to be assessed and indicates a preference for symmetrically bifurcated interactions
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGOâs first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- âŠ