114 research outputs found
An Abrupt Aging of Dissolved Organic Carbon in Large Arctic Rivers
Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity (F14C) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003â2017, DOCâF14C signatures (1.00 ± 0.04; n = 39) tracked atmospheric 14CO2, indicating export of âmodernâ carbon. This trend was interrupted in June 2018 by the widespread release of aged DOC (0.85 ± 0.16, n = 28) measured across three separate catchment areas. Increased nitrate concentrations in June 2018 lead us to attribute this pulse of 14Câdepleted DOC to mobilization of previously frozen soil organic matter. We propose export through lateral perennial thaw zones occurred at the base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet able to ascertain the broader significance of this âanomalousâ mobilization event, it highlights the potential for rapid and largeâscale release of aged carbon from permafrost
Simulation of dimensionality effects in thermal transport
The discovery of nanostructures and the development of growth and fabrication
techniques of one- and two-dimensional materials provide the possibility to
probe experimentally heat transport in low-dimensional systems. Nevertheless
measuring the thermal conductivity of these systems is extremely challenging
and subject to large uncertainties, thus hindering the chance for a direct
comparison between experiments and statistical physics models. Atomistic
simulations of realistic nanostructures provide the ideal bridge between
abstract models and experiments. After briefly introducing the state of the art
of heat transport measurement in nanostructures, and numerical techniques to
simulate realistic systems at atomistic level, we review the contribution of
lattice dynamics and molecular dynamics simulation to understanding nanoscale
thermal transport in systems with reduced dimensionality. We focus on the
effect of dimensionality in determining the phononic properties of carbon and
semiconducting nanostructures, specifically considering the cases of carbon
nanotubes, graphene and of silicon nanowires and ultra-thin membranes,
underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Improving estimation of the prognosis of childhood psychopathology; combination of DSM-III-R/DISC diagnoses and CBCL scores [IF: 2.7]
Objective: To compare the predictive validity of the clinical-diagnostic and the empirical-quantitative approach to assessment of childhood psychopathology, and to investigate the usefulness of combining both approaches. Method: A referred sample (N=96), aged 6 to 12 years at initial assessment, was followed up across - on average - a period of 3.2 years. It was assessed to what extent DISC/DSM-III-R diagnoses - representing the clinical-diagnostic approach, and CBCL scores - representing the empirical-quantitative approach, predicted the following signs of poor outcome: outpatient/inpatient treatment, or parents' wish for professional help for the child at follow-up, disciplinary problems in school, and police/judicial contacts. Results: Both diagnostic systems added significantly to the prediction of poor outcome, and neither of the two systems was superior. Use of both systems simultaneously provided the most accurate estimation of the prognosis, reflected by the occurrence of future poor outcome. Even diagnostic concepts that are generally regarded as relatively similar, such as ADHD (DSM) and attention problems (CBCL), or conduct disorder (DSM) and delinquent behavior (CBCL), appeared to differ in their ability to predict poor outcome. Conclusions: The present study supports the use of the empirical-quantitative approach and the clinical-diagnostic approach simultaneously, both in research and in clinical settings, to obtain a comprehensive view of the prognosis of psychopathology in children. © Association for Child Psychology and Psychiatry, 2004
Ethnic and gender differences in applicants' decision-making processes: An application of the theory of reasoned action
Contains fulltext :
54483.pdf (publisher's version ) (Closed access)11 p
Mutation update for the SATB2 gene
SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120=42.5%) followed by missense variants (31/120=25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge on animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jÀsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
Radioactivity control strategy for the JUNO detector
602siopenJUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. âŒ1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV. [Figure not available: see fulltext.]openAbusleme A.; Adam T.; Ahmad S.; Ahmed R.; Aiello S.; Akram M.; An F.; An Q.; Andronico G.; Anfimov N.; Antonelli V.; Antoshkina T.; Asavapibhop B.; de Andre J.P.A.M.; Auguste D.; Babic A.; Baldini W.; Barresi A.; Basilico D.; Baussan E.; Bellato M.; Bergnoli A.; Birkenfeld T.; Blin S.; Blum D.; Blyth S.; Bolshakova A.; Bongrand M.; Bordereau C.; Breton D.; Brigatti A.; Brugnera R.; Bruno R.; Budano A.; Buscemi M.; Busto J.; Butorov I.; Cabrera A.; Cai H.; Cai X.; Cai Y.; Cai Z.; Cammi A.; Campeny A.; Cao C.; Cao G.; Cao J.; Caruso R.; Cerna C.; Chang J.; Chang Y.; Chen P.; Chen P.-A.; Chen S.; Chen X.; Chen Y.-W.; Chen Y.; Chen Y.; Chen Z.; Cheng J.; Cheng Y.; Chetverikov A.; Chiesa D.; Chimenti P.; Chukanov A.; Claverie G.; Clementi C.; Clerbaux B.; Conforti Di Lorenzo S.; Corti D.; Cremonesi O.; Dal Corso F.; Dalager O.; De La Taille C.; Deng J.; Deng Z.; Deng Z.; Depnering W.; Diaz M.; Ding X.; Ding Y.; Dirgantara B.; Dmitrievsky S.; Dohnal T.; Dolzhikov D.; Donchenko G.; Dong J.; Doroshkevich E.; Dracos M.; Druillole F.; Du S.; Dusini S.; Dvorak M.; Enqvist T.; Enzmann H.; Fabbri A.; Fajt L.; Fan D.; Fan L.; Fang J.; Fang W.; Fargetta M.; Fedoseev D.; Fekete V.; Feng L.-C.; Feng Q.; Ford R.; Formozov A.; Fournier A.; Gan H.; Gao F.; Garfagnini A.; Giammarchi M.; Giaz A.; Giudice N.; Gonchar M.; Gong G.; Gong H.; Gornushkin Y.; Gottel A.; Grassi M.; Grewing C.; Gromov V.; Gu M.; Gu X.; Gu Y.; Guan M.; Guardone N.; Gul M.; Guo C.; Guo J.; Guo W.; Guo X.; Guo Y.; Hackspacher P.; Hagner C.; Han R.; Han Y.; Hassan M.S.; He M.; He W.; Heinz T.; Hellmuth P.; Heng Y.; Herrera R.; Hor Y.K.; Hou S.; Hsiung Y.; Hu B.-Z.; Hu H.; Hu J.; Hu J.; Hu S.; Hu T.; Hu Z.; Huang C.; Huang G.; Huang H.; Huang W.; Huang X.; Huang X.; Huang Y.; Hui J.; Huo L.; Huo W.; Huss C.; Hussain S.; Ioannisian A.; Isocrate R.; Jelmini B.; Jen K.-L.; Jeria I.; Ji X.; Ji X.; Jia H.; Jia J.; Jian S.; Jiang D.; Jiang X.; Jin R.; Jing X.; Jollet C.; Joutsenvaara J.; Jungthawan S.; Kalousis L.; Kampmann P.; Kang L.; Karaparambil R.; Kazarian N.; Khan W.; Khosonthongkee K.; Korablev D.; Kouzakov K.; Krasnoperov A.; Kruth A.; Kutovskiy N.; Kuusiniemi P.; Lachenmaier T.; Landini C.; Leblanc S.; Lebrin V.; Lefevre F.; Lei R.; Leitner R.; Leung J.; Li D.; Li F.; Li F.; Li H.; Li H.; Li J.; Li M.; Li M.; Li N.; Li N.; Li Q.; Li R.; Li S.; Li T.; Li W.; Li W.; Li X.; Li X.; Li X.; Li Y.; Li Y.; Li Z.; Li Z.; Li Z.; Liang H.; Liang H.; Liao J.; Liebau D.; Limphirat A.; Limpijumnong S.; Lin G.-L.; Lin S.; Lin T.; Ling J.; Lippi I.; Liu F.; Liu H.; Liu H.; Liu H.; Liu H.; Liu H.; Liu J.; Liu J.; Liu M.; Liu Q.; Liu Q.; Liu R.; Liu S.; Liu S.; Liu S.; Liu X.; Liu X.; Liu Y.; Liu Y.; Lokhov A.; Lombardi P.; Lombardo C.; Loo K.; Lu C.; Lu H.; Lu J.; Lu J.; Lu S.; Lu X.; Lubsandorzhiev B.; Lubsandorzhiev S.; Ludhova L.; Luo F.; Luo G.; Luo P.; Luo S.; Luo W.; Lyashuk V.; Ma B.; Ma Q.; Ma S.; Ma X.; Ma X.; Maalmi J.; Malyshkin Y.; Mantovani F.; Manzali F.; Mao X.; Mao Y.; Mari S.M.; Marini F.; Marium S.; Martellini C.; Martin-Chassard G.; Martini A.; Mayer M.; Mayilyan D.; Mednieks I.; Meng Y.; Meregaglia A.; Meroni E.; Meyhofer D.; Mezzetto M.; Miller J.; Miramonti L.; Montini P.; Montuschi M.; Muller A.; Nastasi M.; Naumov D.V.; Naumova E.; Navas-Nicolas D.; Nemchenok I.; Nguyen Thi M.T.; Ning F.; Ning Z.; Nunokawa H.; Oberauer L.; Ochoa-Ricoux J.P.; Olshevskiy A.; Orestano D.; Ortica F.; Othegraven R.; Pan H.-R.; Paoloni A.; Parmeggiano S.; Pei Y.; Pelliccia N.; Peng A.; Peng H.; Perrot F.; Petitjean P.-A.; Petrucci F.; Pilarczyk O.; Pineres Rico L.F.; Popov A.; Poussot P.; Pratumwan W.; Previtali E.; Qi F.; Qi M.; Qian S.; Qian X.; Qian Z.; Qiao H.; Qin Z.; Qiu S.; Rajput M.U.; Ranucci G.; Raper N.; Re A.; Rebber H.; Rebii A.; Ren B.; Ren J.; Ricci B.; Robens M.; Roche M.; Rodphai N.; Romani A.; Roskovec B.; Roth C.; Ruan X.; Ruan X.; Rujirawat S.; Rybnikov A.; Sadovsky A.; Saggese P.; Sanfilippo S.; Sangka A.; Sanguansak N.; Sawangwit U.; Sawatzki J.; Sawy F.; Schever M.; Schwab C.; Schweizer K.; Selyunin A.; Serafini A.; Settanta G.; Settimo M.; Shao Z.; Sharov V.; Shaydurova A.; Shi J.; Shi Y.; Shutov V.; Sidorenkov A.; Simkovic F.; Sirignano C.; Siripak J.; Sisti M.; Slupecki M.; Smirnov M.; Smirnov O.; Sogo-Bezerra T.; Sokolov S.; Songwadhana J.; Soonthornthum B.; Sotnikov A.; Sramek O.; Sreethawong W.; Stahl A.; Stanco L.; Stankevich K.; Stefanik D.; Steiger H.; Steinmann J.; Sterr T.; Stock M.R.; Strati V.; Studenikin A.; Sun S.; Sun X.; Sun Y.; Sun Y.; Suwonjandee N.; Szelezniak M.; Tang J.; Tang Q.; Tang Q.; Tang X.; Tietzsch A.; Tkachev I.; Tmej T.; Treskov K.; Triossi A.; Troni G.; Trzaska W.; Tuve C.; Ushakov N.; van den Boom J.; van Waasen S.; Vanroyen G.; Vassilopoulos N.; Vedin V.; Verde G.; Vialkov M.; Viaud B.; Vollbrecht M.C.; Volpe C.; Vorobel V.; Voronin D.; Votano L.; Walker P.; Wang C.; Wang C.-H.; Wang E.; Wang G.; Wang J.; Wang J.; Wang K.; Wang L.; Wang M.; Wang M.; Wang M.; Wang R.; Wang S.; Wang W.; Wang W.; Wang W.; Wang X.; Wang X.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Z.; Wang Z.; Wang Z.; Wang Z.; Waqas M.; Watcharangkool A.; Wei L.; Wei W.; Wei W.; Wei Y.; Wen L.; Wiebusch C.; Wong S.C.-F.; Wonsak B.; Wu D.; Wu F.; Wu Q.; Wu Z.; Wurm M.; Wurtz J.; Wysotzki C.; Xi Y.; Xia D.; Xie X.; Xie Y.; Xie Z.; Xing Z.; Xu B.; Xu C.; Xu D.; Xu F.; Xu H.; Xu J.; Xu J.; Xu M.; Xu Y.; Xu Y.; Yan B.; Yan T.; Yan W.; Yan X.; Yan Y.; Yang A.; Yang C.; Yang C.; Yang H.; Yang J.; Yang L.; Yang X.; Yang Y.; Yang Y.; Yao H.; Yasin Z.; Ye J.; Ye M.; Ye Z.; Yegin U.; Yermia F.; Yi P.; Yin N.; Yin X.; You Z.; Yu B.; Yu C.; Yu C.; Yu H.; Yu M.; Yu X.; Yu Z.; Yu Z.; Yuan C.; Yuan Y.; Yuan Z.; Yuan Z.; Yue B.; Zafar N.; Zambanini A.; Zavadskyi V.; Zeng S.; Zeng T.; Zeng Y.; Zhan L.; Zhang A.; Zhang F.; Zhang G.; Zhang H.; Zhang H.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang P.; Zhang Q.; Zhang S.; Zhang S.; Zhang T.; Zhang X.; Zhang X.; Zhang X.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Z.; Zhang Z.; Zhao F.; Zhao J.; Zhao R.; Zhao S.; Zhao T.; Zheng D.; Zheng H.; Zheng M.; Zheng Y.; Zhong W.; Zhou J.; Zhou L.; Zhou N.; Zhou S.; Zhou T.; Zhou X.; Zhu J.; Zhu K.; Zhu K.; Zhu Z.; Zhuang B.; Zhuang H.; Zong L.; Zou J.Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; An, F.; An, Q.; Andronico, G.; Anfimov, N.; Antonelli, V.; Antoshkina, T.; Asavapibhop, B.; de Andre, J. P. A. M.; Auguste, D.; Babic, A.; Baldini, W.; Barresi, A.; Basilico, D.; Baussan, E.; Bellato, M.; Bergnoli, A.; Birkenfeld, T.; Blin, S.; Blum, D.; Blyth, S.; Bolshakova, A.; Bongrand, M.; Bordereau, C.; Breton, D.; Brigatti, A.; Brugnera, R.; Bruno, R.; Budano, A.; Buscemi, M.; Busto, J.; Butorov, I.; Cabrera, A.; Cai, H.; Cai, X.; Cai, Y.; Cai, Z.; Cammi, A.; Campeny, A.; Cao, C.; Cao, G.; Cao, J.; Caruso, R.; Cerna, C.; Chang, J.; Chang, Y.; Chen, P.; Chen, P. -A.; Chen, S.; Chen, X.; Chen, Y. -W.; Chen, Y.; Chen, Y.; Chen, Z.; Cheng, J.; Cheng, Y.; Chetverikov, A.; Chiesa, D.; Chimenti, P.; Chukanov, A.; Claverie, G.; Clementi, C.; Clerbaux, B.; Conforti Di Lorenzo, S.; Corti, D.; Cremonesi, O.; Dal Corso, F.; Dalager, O.; De La Taille, C.; Deng, J.; Deng, Z.; Deng, Z.; Depnering, W.; Diaz, M.; Ding, X.; Ding, Y.; Dirgantara, B.; Dmitrievsky, S.; Dohnal, T.; Dolzhikov, D.; Donchenko, G.; Dong, J.; Doroshkevich, E.; Dracos, M.; Druillole, F.; Du, S.; Dusini, S.; Dvorak, M.; Enqvist, T.; Enzmann, H.; Fabbri, A.; Fajt, L.; Fan, D.; Fan, L.; Fang, J.; Fang, W.; Fargetta, M.; Fedoseev, D.; Fekete, V.; Feng, L. -C.; Feng, Q.; Ford, R.; Formozov, A.; Fournier, A.; Gan, H.; Gao, F.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Giudice, N.; Gonchar, M.; Gong, G.; Gong, H.; Gornushkin, Y.; Gottel, A.; Grassi, M.; Grewing, C.; Gromov, V.; Gu, M.; Gu, X.; Gu, Y.; Guan, M.; Guardone, N.; Gul, M.; Guo, C.; Guo, J.; Guo, W.; Guo, X.; Guo, Y.; Hackspacher, P.; Hagner, C.; Han, R.; Han, Y.; Hassan, M. S.; He, M.; He, W.; Heinz, T.; Hellmuth, P.; Heng, Y.; Herrera, R.; Hor, Y. K.; Hou, S.; Hsiung, Y.; Hu, B. -Z.; Hu, H.; Hu, J.; Hu, J.; Hu, S.; Hu, T.; Hu, Z.; Huang, C.; Huang, G.; Huang, H.; Huang, W.; Huang, X.; Huang, X.; Huang, Y.; Hui, J.; Huo, L.; Huo, W.; Huss, C.; Hussain, S.; Ioannisian, A.; Isocrate, R.; Jelmini, B.; Jen, K. -L.; Jeria, I.; Ji, X.; Ji, X.; Jia, H.; Jia, J.; Jian, S.; Jiang, D.; Jiang, X.; Jin, R.; Jing, X.; Jollet, C.; Joutsenvaara, J.; Jungthawan, S.; Kalousis, L.; Kampmann, P.; Kang, L.; Karaparambil, R.; Kazarian, N.; Khan, W.; Khosonthongkee, K.; Korablev, D.; Kouzakov, K.; Krasnoperov, A.; Kruth, A.; Kutovskiy, N.; Kuusiniemi, P.; Lachenmaier, T.; Landini, C.; Leblanc, S.; Lebrin, V.; Lefevre, F.; Lei, R.; Leitner, R.; Leung, J.; Li, D.; Li, F.; Li, F.; Li, H.; Li, H.; Li, J.; Li, M.; Li, M.; Li, N.; Li, N.; Li, Q.; Li, R.; Li, S.; Li, T.; Li, W.; Li, W.; Li, X.; Li, X.; Li, X.; Li, Y.; Li, Y.; Li, Z.; Li, Z.; Li, Z.; Liang, H.; Liang, H.; Liao, J.; Liebau, D.; Limphirat, A.; Limpijumnong, S.; Lin, G. -L.; Lin, S.; Lin, T.; Ling, J.; Lippi, I.; Liu, F.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, J.; Liu, J.; Liu, M.; Liu, Q.; Liu, Q.; Liu, R.; Liu, S.; Liu, S.; Liu, S.; Liu, X.; Liu, X.; Liu, Y.; Liu, Y.; Lokhov, A.; Lombardi, P.; Lombardo, C.; Loo, K.; Lu, C.; Lu, H.; Lu, J.; Lu, J.; Lu, S.; Lu, X.; Lubsandorzhiev, B.; Lubsandorzhiev, S.; Ludhova, L.; Luo, F.; Luo, G.; Luo, P.; Luo, S.; Luo, W.; Lyashuk, V.; Ma, B.; Ma, Q.; Ma, S.; Ma, X.; Ma, X.; Maalmi, J.; Malyshkin, Y.; Mantovani, F.; Manzali, F.; Mao, X.; Mao, Y.; Mari, S. M.; Marini, F.; Marium, S.; Martellini, C.; Martin-Chassard, G.; Martini, A.; Mayer, M.; Mayilyan, D.; Mednieks, I.; Meng, Y.; Meregaglia, A.; Meroni, E.; Meyhofer, D.; Mezzetto, M.; Miller, J.; Miramonti, L.; Montini, P.; Montuschi, M.; Muller, A.; Nastasi, M.; Naumov, D. V.; Naumova, E.; Navas-Nicolas, D.; Nemchenok, I.; Nguyen Thi, M. T.; Ning, F.; Ning, Z.; Nunokawa, H.; Oberauer, L.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orestano, D.; Ortica, F.; Othegraven, R.; Pan, H. -R.; Paoloni, A.; Parmeggiano, S.; Pei, Y.; Pelliccia, N.; Peng, A.; Peng, H.; Perrot, F.; Petitjean, P. -A.; Petrucci, F.; Pilarczyk, O.; Pineres Rico, L. F.; Popov, A.; Poussot, P.; Pratumwan, W.; Previtali, E.; Qi, F.; Qi, M.; Qian, S.; Qian, X.; Qian, Z.; Qiao, H.; Qin, Z.; Qiu, S.; Rajput, M. U.; Ranucci, G.; Raper, N.; Re, A.; Rebber, H.; Rebii, A.; Ren, B.; Ren, J.; Ricci, B.; Robens, M.; Roche, M.; Rodphai, N.; Romani, A.; Roskovec, B.; Roth, C.; Ruan, X.; Ruan, X.; Rujirawat, S.; Rybnikov, A.; Sadovsky, A.; Saggese, P.; Sanfilippo, S.; Sangka, A.; Sanguansak, N.; Sawangwit, U.; Sawatzki, J.; Sawy, F.; Schever, M.; Schwab, C.; Schweizer, K.; Selyunin, A.; Serafini, A.; Settanta, G.; Settimo, M.; Shao, Z.; Sharov, V.; Shaydurova, A.; Shi, J.; Shi, Y.; Shutov, V.; Sidorenkov, A.; Simkovic, F.; Sirignano, C.; Siripak, J.; Sisti, M.; Slupecki, M.; Smirnov, M.; Smirnov, O.; Sogo-Bezerra, T.; Sokolov, S.; Songwadhana, J.; Soonthornthum, B.; Sotnikov, A.; Sramek, O.; Sreethawong, W.; Stahl, A.; Stanco, L.; Stankevich, K.; Stefanik, D.; Steiger, H.; Steinmann, J.; Sterr, T.; Stock, M. R.; Strati, V.; Studenikin, A.; Sun, S.; Sun, X.; Sun, Y.; Sun, Y.; Suwonjandee, N.; Szelezniak, M.; Tang, J.; Tang, Q.; Tang, Q.; Tang, X.; Tietzsch, A.; Tkachev, I.; Tmej, T.; Treskov, K.; Triossi, A.; Troni, G.; Trzaska, W.; Tuve, C.; Ushakov, N.; van den Boom, J.; van Waasen, S.; Vanroyen, G.; Vassilopoulos, N.; Vedin, V.; Verde, G.; Vialkov, M.; Viaud, B.; Vollbrecht, M. C.; Volpe, C.; Vorobel, V.; Voronin, D.; Votano, L.; Walker, P.; Wang, C.; Wang, C. -H.; Wang, E.; Wang, G.; Wang, J.; Wang, J.; Wang, K.; Wang, L.; Wang, M.; Wang, M.; Wang, M.; Wang, R.; Wang, S.; Wang, W.; Wang, W.; Wang, W.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Z.; Wang, Z.; Wang, Z.; Wang, Z.; Waqas, M.; Watcharangkool, A.; Wei, L.; Wei, W.; Wei, W.; Wei, Y.; Wen, L.; Wiebusch, C.; Wong, S. C. -F.; Wonsak, B.; Wu, D.; Wu, F.; Wu, Q.; Wu, Z.; Wurm, M.; Wurtz, J.; Wysotzki, C.; Xi, Y.; Xia, D.; Xie, X.; Xie, Y.; Xie, Z.; Xing, Z.; Xu, B.; Xu, C.; Xu, D.; Xu, F.; Xu, H.; Xu, J.; Xu, J.; Xu, M.; Xu, Y.; Xu, Y.; Yan, B.; Yan, T.; Yan, W.; Yan, X.; Yan, Y.; Yang, A.; Yang, C.; Yang, C.; Yang, H.; Yang, J.; Yang, L.; Yang, X.; Yang, Y.; Yang, Y.; Yao, H.; Yasin, Z.; Ye, J.; Ye, M.; Ye, Z.; Yegin, U.; Yermia, F.; Yi, P.; Yin, N.; Yin, X.; You, Z.; Yu, B.; Yu, C.; Yu, C.; Yu, H.; Yu, M.; Yu, X.; Yu, Z.; Yu, Z.; Yuan, C.; Yuan, Y.; Yuan, Z.; Yuan, Z.; Yue, B.; Zafar, N.; Zambanini, A.; Zavadskyi, V.; Zeng, S.; Zeng, T.; Zeng, Y.; Zhan, L.; Zhang, A.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, P.; Zhang, Q.; Zhang, S.; Zhang, S.; Zhang, T.; Zhang, X.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Z.; Zhang, Z.; Zhao, F.; Zhao, J.; Zhao, R.; Zhao, S.; Zhao, T.; Zheng, D.; Zheng, H.; Zheng, M.; Zheng, Y.; Zhong, W.; Zhou, J.; Zhou, L.; Zhou, N.; Zhou, S.; Zhou, T.; Zhou, X.; Zhu, J.; Zhu, K.; Zhu, K.; Zhu, Z.; Zhuang, B.; Zhuang, H.; Zong, L.; Zou, J
Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge
Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROCâ=â0.87), as well as tremor- (best AUPRâ=â0.75), dyskinesia- (best AUPRâ=â0.48) and bradykinesia-severity (best AUPRâ=â0.95)
- âŠ