3 research outputs found

    Clinical Validation of the Cervista HPV HR Test According to the International Guidelines for Human Papillomavirus Test Requirements for Cervical Cancer Screening

    Get PDF
    This study demonstrates that both the clinical sensitivity and specificity of the Cervista HPV HR test for high-risk human papillomavirus (HPV) detection are not inferior to those of the Hybrid Capture 2 (HC2) test. The intra- and interlaboratory reproducibilities of Cervista were 92.0% (kappa, 0.83) and 90.4% (kappa, 0.80), respectively. The Cervista HPV HR test fulfills all the international HPV test requirements for cervical primary screening purposes

    The role of ATM and 53BP1 as predictive markers in cervical cancer

    Get PDF
    Treatment of advanced-stage cervical cancers with (chemo)radiation causes cytotoxicity through induction of high levels of DNA damage. Tumour cells respond to DNA damage by activation of the DNA damage response (DDR), which induces DNA repair and may counteract chemoradiation efficacy. Here, we investigated DDR components as potential therapeutic targets and verified the predictive and prognostic value of DDR activation in patients with cervical cancer treated with (chemo)radiation. In a panel of cervical cancer cell lines, inactivation of ataxia telangiectasia mutated (ATM) or its substrate p53-binding protein-1 (53BP1) clearly gave rise to cell cycle defects in response to irradiation. Concordantly, clonogenic survival analysis revealed that ATM inhibition, but not 53BP1 depletion, strongly radiosensitised cervical cancer cells. In contrast, ATM inhibition did not radiosensitise non-transformed epithelial cells or non-transformed BJ fibroblasts. Interestingly, high levels of active ATM prior to irradiation were related with increased radioresistance. To test whether active ATM in tumours prior to treatment also resulted in resistance to therapy, immunohistochemistry was performed on tumour material of patients with advanced-stage cervical cancer (n = 375) treated with (chemo)radiation. High levels of phosphorylated (p-)ATM [p = 0.006, hazard ratio (HR) = 1.817] were related to poor locoregional disease-free survival. Furthermore, high levels of p-ATM predicted shorter disease-specific survival (p = 0.038, HR = 1.418). The presence of phosphorylated 53BP1 was associated with p-ATM (p = 0.001, odds ratio = 2.206) but was not related to any clinicopathological features or survival. In conclusion, both our in vitro and patient-related findings indicate a protective role for ATM in response to (chemo)radiation in cervical cancer and point at ATM inhibition as a possible means to improve the efficacy of (chemo)radiation

    CADM1, MAL and miR124-2 methylation analysis in cervical scrapes to detect cervical and endometrial cancer

    Get PDF
    Aims Gene promoter hypermethylation is recognised as an essential early step in carcinogenesis, indicating important application areas for DNA methylation analysis in early cancer detection. The current study was set out to assess the performance of CADM1, MAL and miR124-2 methylation analysis in cervical scrapes for detection of cervical and endometrial cancer. Methods A series of cervical scrapes of women with cervical (n=79) or endometrial (n=21) cancer, cervical intraepithelial neoplasia grade 3 (CIN3) (n=16) or CIN2 (n=32), and women without evidence of CIN2 or worse (n=120) were assessed for methylation of CADM1, MAL and miR124-2. Methylation analysis was done by the PreCursor-M assay, a multiplex quantitative methylation-specific PCR. Results All samples of women with cervical cancer (79/79, 100%), independent of the histotype, and 76% (16/21; 95% CI 58.0% to 94.4%) of women with endometrial cancer scored positive for DNA methylation for at least one of the three genes. In women without cancer, methylation frequencies increased significantly with severity of disease from 19.2% (23/120; 95% CI 12.1% to 26.2%) in women without CIN2 or worse to 37.5% (12/32; 95% CI 20.7% to 54.3%) and 68.8% (11/16; 95% CI 46.0% to 91.5%) in women with CIN2 and CIN3, respectively. Overall methylation positivity and the number of methylated genes increased proportionally to the lesion severity. Conclusions DNA methylation analysis of CADM1, MAL and miR124- 2 in cervical scrapes consistently detects cervical cancer and the majority of CIN3 lesions, and has the capacity to broaden its use on cervical scrapes through the detection of a substantial subset of endometrial carcinomas
    corecore