1 research outputs found
Supramolecular peptide nanofibrils with optimized sequences and molecular structures for efficient retroviral transduction
Amyloidâlike peptide nanofibrils (PNFs) are abundant in nature providing rich bioactivities and playing both functional and pathological roles. The structural features responsible for their unique bioactivities are, however, still elusive. Supramolecular nanostructures are notoriously challenging to optimize, as sequence changes affect selfâassembly, fibril morphologies, and biorecognition. Herein, the first sequence optimization of PNFs, derived from the peptide enhancing factorâC (EFâC, QCKIKQIINMWQ), for enhanced retroviral gene transduction via a multiparameter and a multiscale approach is reported. Retroviral gene transfer is the method of choice for the stable delivery of genetic information into cells offering great perspectives for the treatment of genetic disorders. Single fibril imaging, zeta potential, vibrational spectroscopy, and quantitative retroviral transduction assays provide the structure parameters responsible for PNF assembly, fibrils morphology, secondary and quaternary structure, and PNFâvirusâcell interactions. Optimized peptide sequences such as the 7âmer, CKFKFQF, have been obtained quantitatively forming supramolecular nanofibrils with high intermolecular βâsheet content that efficiently bind virions and attach to cellular membranes revealing efficient retroviral gene transfer.<br/