15 research outputs found

    Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21

    Get PDF
    Purpose: To assess the prevalence of an abnormal number of ribs in a cohort of fetuses and neonates with trisomy 21 and compare this with a subgroup of fetuses without anomalies. Materials and methods: Radiographs of 67 deceased fetuses, neonates, and infants that were diagnosed with trisomy 21 were reviewed. Terminations of pregnancy were included. The control group was composed of 107 deceased fetuses, neonates, and infants without known chromosomal abnormalities, structural malformations, infections or placental pathology. Cases in which the number of thoracic ribs or presence of cervical ribs could not be reliably assessed were excluded. The literature concerning vertebral patterning in trisomy 21 cases and healthy subjects was reviewed. Results: Absent or rudimentary 12th thoracic ribs were found in 26/54 (48.1%) cases with trisomy 21 and cervical ribs were present in 27/47 (57.4%) cases. This prevalence was significantly higher compared to controls (28/100, 28.0%, Χ2(1) = 6.252, p = .012 and 28/97, 28.9%, Χ2(1) = 10.955, p < .001, respectively). Conclusions: Rudimentary or absent 12th thoracic ribs and cervical ribs are significantly more prevalent in deceased fetuses and infants with trisomy 21

    Loss of p53 triggers Wnt-dependent systemic inflammation to drive breast cancer metastasis

    Get PDF
    Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1β, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1β and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer

    Loss of p53 triggers Wnt-dependent systemic inflammation to drive breast cancer metastasis

    Get PDF
    Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1β, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1β and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer

    Exogenous ERα Expression in the Mammary Epithelium Decreases Over Time and Does Not Contribute to p53-Deficient Mammary Tumor Formation in Mice

    No full text
    Approximately 75% of all breast cancers express the nuclear hormone receptor estrogen receptor α (ERα). However, the majority of mammary tumors from genetically engineered mouse models (GEMMs) are ERα-negative. To model ERα-positive breast cancer in mice, we exogenously introduced expression of mouse and human ERα in an existing GEMM of p53-deficient breast cancer. After initial ERα expression during mammary gland development, expression was reduced or lost in adult glands and p53-deficient mammary tumors. Chromatin immunoprecipitation (ChIP)-sequencing analysis of primary mouse mammary epithelial cells (MMECs) derived from these models, in which expression of the ERα constructs was induced in vitro, confirmed interaction of ERα with the DNA. In human breast and endometrial cancer, and also in healthy breast tissue, DNA binding of ERα is facilitated by the pioneer factor FOXA1. Surprisingly, the ERα binding sites identified in primary MMECs, but also in mouse mammary gland and uterus, showed an high enrichment of ERE motifs, but were devoid of Forkhead motifs. Furthermore, exogenous introduction of FOXA1 and GATA3 in ERα-expressing MMECs was not sufficient to promote ERα-responsiveness of these cells. Together, this suggests that species-specific differences in pioneer factor usage between mouse and human are dictated by the DNA sequence, resulting in ERα-dependencies in mice that are not FOXA1 driven. These species-specific differences in ERα-biology may limit the utility of mice for in vivo modeling of ERα-positive breast cancer

    Completing or Abandoning Radical Hysterectomy in Early-Stage Lymph Node-Positive Cervical Cancer: Impact on Disease-Free Survival and Treatment-Related Toxicity

    No full text
    Management regarding completing hysterectomy in case of intraoperative finding of positive lymph nodes in early-stage cervical cancer differs between institutions. The aim of this study was to compare survival and toxicity after completed hysterectomy followed by adjuvant (chemo-)radiotherapy versus abandoned hysterectomy and primary treatment with chemoradiotherapy (CRT). A retrospective multicenter cohort study was performed. All patients were scheduled for radical hysterectomy with pelvic lymphadenectomy (RHL). In the RHL group, hysterectomy was completed followed by adjuvant (chemo-)radiotherapy. In the second group, hysterectomy was abandoned, and CRT was conducted. Primary outcomes were disease-free survival (DFS) and overall survival. A multivariable analysis on DFS was performed. Toxicity was scored according to the National Cancer Institute CTCAE (Common Terminology Criteria for Adverse Events) v4.03. A total of 121 patients were included (RHL, n = 89; CRT, n = 32). There was no difference in overall survival (84% vs 77%). Five-year DFS was in favor of completing RHL (81% vs 67%). Multivariable analysis showed that, corrected for lymph node variables, treatment regimen was not associated with DFS. After RHL, pelvic recurrence rate was significantly lower compared with CRT (2% vs 16%). CTCAE grade 3-4 toxicity rates were higher in the CRT compared with the RHL group (59% vs 30%), mainly because of differences in chemotherapy-related hematologic toxicity. In patients with clinically N0 early-stage cervical cancer with intraoperative detection of positive nodes, completing RHL followed by adjuvant (chemo-)radiotherapy may result in a better pelvic control compared with abandoning hysterectomy and treatment with chemoradiotherapy. However, if corrected for lymph node variables, treatment (RHL or CRT) was not associated with DF
    corecore