315 research outputs found
Kohn Anomalies in Superconductors
I present the detailed behavior of phonon dispersion curves near momenta
which span the electronic Fermi sea in a superconductor. I demonstrate that an
anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's
dispersion curves when the frequency of the phonon spanning the Fermi sea
exceeds twice the superconducting energy gap. This anomaly occurs at
approximately the same momentum but is {\it stronger} than the normal-state
Kohn anomaly. It also survives at finite temperature, unlike the metallic
anomaly. Determination of Fermi surface diameters from the location of these
anomalies, therefore, may be more successful in the superconducting phase than
in the normal state. However, the superconductor's anomaly fades rapidly with
increased phonon frequency and becomes unobservable when the phonon frequency
greatly exceeds the gap. This constraint makes these anomalies useful only in
high-temperature superconductors such as .Comment: 18 pages (revtex) + 11 figures (upon request), NSF-ITP-93-7
The Minimally Tuned Minimal Supersymmetric Standard Model
The regions in the Minimal Supersymmetric Standard Model with the minimal
amount of fine-tuning of electroweak symmetry breaking are presented for
general messenger scale. No a priori relations among the soft supersymmetry
breaking parameters are assumed and fine-tuning is minimized with respect to
all the important parameters which affect electroweak symmetry breaking. The
superpartner spectra in the minimally tuned region of parameter space are quite
distinctive with large stop mixing at the low scale and negative squark soft
masses at the high scale. The minimal amount of tuning increases enormously for
a Higgs mass beyond roughly 120 GeV.Comment: 38 pages, including 2 appendices, 8 figure
Vortex phase transformations probed by the local ac response of Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} single crystals with various doping
The linear ac response of the vortex system is measured locally in Bi-2212
single crystals at various doping, using a miniature two-coil mutual-inductance
technique. It was found that a step-like change in the local ac response takes
place exactly at the first-order transition (FOT) temperature T_{FOT}(H)
determined by a global dc magnetization measurement. The T_{FOT}(H) line in the
H-T phase diagram becomes steeper with increasing doping. In the higher-field
region where the FOT is not observed, the local ac response still shows a
broadened but distinct feature, which can be interpreted to mark the growth of
a short-range order in the vortex system.Comment: 4 pages, including 5 eps figure
Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling
Small lattices of nearest neighbor coupled excitable FitzHugh-Nagumo
systems, with time-delayed coupling are studied, and compared with systems of
FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of
equilibria in N=2 case are studied analytically, and it is then numerically
confirmed that the same bifurcations are relevant for the dynamics in the case
. Bifurcations found include inverse and direct Hopf and fold limit cycle
bifurcations. Typical dynamics for different small time-lags and coupling
intensities could be excitable with a single globally stable equilibrium,
asymptotic oscillatory with symmetric limit cycle, bi-stable with stable
equilibrium and a symmetric limit cycle, and again coherent oscillatory but
non-symmetric and phase-shifted. For an intermediate range of time-lags inverse
sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of
oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo
oscillators with the same type of coupling.Comment: accepted by Phys.Rev.
Magnetic-field and current-density distributions in thin-film superconducting rings and disks
We show how to calculate the magnetic-field and sheet-current distributions
for a thin-film superconducting annular ring (inner radius a, outer radius b,
and thickness d<<a) when either the penetration depth obeys lambda < d/2 or, if
lambda > d/2, the two-dimensional screening length obeys Lambda = 2 lambda^2/d
<< a for the following cases: (a) magnetic flux trapped in the hole in the
absence of an applied magnetic field, (b) zero magnetic flux in the hole when
the ring is subjected to an applied magnetic field, and (c) focusing of
magnetic flux into the hole when a magnetic field is applied but no net current
flows around the ring. We use a similar method to calculate the magnetic-field
and sheet-current distributions and magnetization loops for a thin,
bulk-pinning-free superconducting disk (radius b) containing a dome of magnetic
flux of radius a when flux entry is impeded by a geometrical barrier.Comment: 10 pages, 13 figure
Recommended from our members
Transonic flutter analysis using a fully coupled density based solver for inviscid flow
This paper focuses on the coupling between the high fidelity aerodynamic model for the flow field and the modal analysis of a typical wing section to carry out flutter analysis. This coupled aeroelastic model is implemented in one of the most widely used open source CFD codes called OpenFOAM. The model is designed to calculate the structural displacement in the time domain based on the free vibration modes of the structure by constructing the numerical model directly from the modal analysis. Essentially a second order ordinary differential equation is solved for each mode as a function of the generalised coordinates. A density based solver using central difference scheme of Kurganov and Tadmor is used to model the flow field. Two main cases of transonic flow over NACA 64A010 are modelled for a forced pitching oscillation airfoil and a self-sustained aerofoil respectively. The self-sustained two degrees of freedom case is modelled for three different possibilities covering damped, neutral and divergent oscillations. Predicted results show very good agreement with the numerical and experimental data available in the literature
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
- …